Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T15:42:11.483Z Has data issue: false hasContentIssue false

Takens–Bogdanov bifurcation of travelling-wave solutions in pipe flow

Published online by Cambridge University Press:  25 January 2011

F. MELLIBOVSKY*
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
B. ECKHARDT
Affiliation:
Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany Laboratory for Aero and Hydrodynamics, Delft University of Technology, 2628 CA Delft, The Netherlands
*
Email address for correspondence: fmellibovsky@fa.upc.edu

Abstract

The appearance of travelling-wave-type solutions in pipe Poiseuille flow that are disconnected from the basic parabolic profile is numerically studied in detail. We focus on solutions in the twofold azimuthally-periodic subspace because of their special stability properties, but relate our findings to other solutions as well. Using time-stepping, an adapted Krylov–Newton method and Arnoldi iteration for the computation and stability analysis of relative equilibria, and a robust pseudo-arclength continuation scheme, we unfold a double-zero (Takens–Bogdanov) bifurcating scenario as a function of Reynolds number (Re) and wavenumber (κ). This scenario is extended, by the inclusion of higher-order terms in the normal form, to account for the appearance of supercritical modulated waves emanating from the upper branch of solutions at a degenerate Hopf bifurcation. We provide evidence that these modulated waves undergo a fold-of-cycles and compute some solutions on the unstable branch. These waves are shown to disappear in saddle-loop bifurcations upon collision with lower-branch solutions, in accordance with the bifurcation scenario proposed. The travelling-wave upper-branch solutions are stable within the subspace of twofold periodic flows, and their subsequent secondary bifurcations could contribute to the formation of the phase space structures that are required for turbulent dynamics at higher Re.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkley, D. 1990 Theory and predictions for finite-amplitude waves in two-dimensional plane Poiseuille flow. Phys. Fluids A 2 (6), 955970.Google Scholar
Boberg, L. & Brosa, U. 1988 Onset of turbulence in a pipe. Z. Naturforsch. A: Phys. Sci. 43, 697726.Google Scholar
Bogdanov, R. 1975 Versal deformations of a singular point on the plane in the case of zero eigenvalues. Funct. Anal. Appl. 9, 144145.Google Scholar
Brosa, U. & Grossmann, S. 1999 Minimum description of the onset of pipe turbulence. Eur. Phys. J. B 9 (2), 343354.Google Scholar
Chossat, P. & Lauterbach, R. 2000 Methods in Equivariant Bifurcations and Dynamical Systems. World Scientific.CrossRefGoogle Scholar
Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-mass-flux pipe flow. J. Fluid Mech. 289, 83114.CrossRefGoogle Scholar
Dennis, J. E. & Schnabel, R. B. 1996 Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM.CrossRefGoogle Scholar
Duguet, Y., Pringle, C. C. T. & Kerswell, R. R. 2008 a Relative periodic orbits in transitional pipe flow. Phys. Fluids 20 (11), 114102.Google Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 b Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.Google Scholar
Dumortier, F., Roussarie, R., Sotomayor, J. & Zoladek, H. 1991 Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals. Springer.Google Scholar
Eckhardt, B. 2009 Introduction. Turbulence transition in pipe flow: 125th anniversary of the publication of Reynolds' paper. Phil. Trans. R. Soc. Lond. A 367, 449455.Google Scholar
Eckhardt, B., Faisst, H., Schmiegel, A. & Schneider, T. M. 2008 Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil. Trans. R. Soc. Lond. A 366, 12971315.Google Scholar
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.CrossRefGoogle Scholar
Ehrenstein, U. & Koch, W. 1991 Three-dimensional wave-like equilibrium states in plane Poiseuille flow. J. Fluid Mech. 228, 111148.Google Scholar
Ehrenstein, U. & Koch, W. 1995 Homoclinic bifurcation in Blasius boundary-layer flow. Phys. Fluids 7, 12821291.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Travelling waves in pipe flow. Phys. Rev. Lett. 91 (22), 224502.Google Scholar
Frayssé, V., Giraud, L., Gratton, S. & Langou, J. 2003 A set of GMRES routines for real and complex arithmetics on high performance computers. Tech. Rep. TR/PA/03/3. CERFACS. Available at: http://www.cerfacs/algor/Softs.Google Scholar
Freitag, M. A. 2007 Inner–outer iterative methods for eigenvalue problems: convergence and preconditioning. PhD thesis, University of Bath, Bath, UK.Google Scholar
Gaspard, P. 1990 Measurement of the instability rate of a far-from-equilibrium steady state at an infinite period bifurcation. J. Phys. Chem. 94 (1), 13.CrossRefGoogle Scholar
Golubitsky, M., LeBlanc, V. G. & Melbourne, I. 2000 Hopf bifurcation from rotating waves and patterns in physical space. J. Nonlinear Sci. 10 (1), 69101.Google Scholar
Grossmann, S. 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72 (2), 603618.Google Scholar
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer.Google Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science 305 (5690), 15941598.Google Scholar
Hof, B., Schneider, T. M., Westerweel, J. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443 (7107), 5962.CrossRefGoogle ScholarPubMed
Iooss, G. & Adelmeyer, M. 1998 Topics in Bifurcation Theory and Applications, 2nd edn. World Scientific.Google Scholar
Kerswell, R. R. & Tutty, O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.Google Scholar
Knobloch, E. 1986 Normal forms for bifurcations at a double zero eigenvalue. Phys. Lett. A 115 (5), 199201.Google Scholar
Krupa, M. 1990 Bifurcations of relative equilibria. SIAM J. Math. Anal. 21 (6), 14531486.Google Scholar
Kuznetsov, Y. A. 1995 Elements of Applied Bifurcation Theory, 3rd edn. Springer.Google Scholar
Lehoucq, R. & Scott, J. A. 1996 An evaluation of software for computing eigenvalues of sparse nonsymmetric matrices. Tech. Rep. MCS-P547-1195. Argonne National Laboratory. Available at: http://www.caam.rice.edu/software/ARPACK.Google Scholar
Mamun, C. K. & Tuckerman, L. S. 1995 Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7 (1), 8091.Google Scholar
Meerbergen, K., Spence, A. & Roose, D. 1994 Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric. BIT 34 (3), 409423.CrossRefGoogle Scholar
Mellibovsky, F. & Meseguer, A. 2009 Critical threshold in pipe flow transition. Phil. Trans. R. Soc. Lond. A 367, 545560.Google ScholarPubMed
Meseguer, A., Avila, M., Mellibovsky, F. & Marques, P. 2007 Solenoidal spectral formulations for the computation of secondary flows in cylindrical and annular geometries. Eur. Phys. J. Special Topics 146, 249259.CrossRefGoogle Scholar
Meseguer, A. & Mellibovsky, F. 2007 On a solenoidal Fourier–Chebyshev spectral method for stability analysis of the Hagen–Poiseuille flow. Appl. Numer. Maths 57, 920938.Google Scholar
Meseguer, A. & Trefethen, L. N. 2003 Linearized pipe flow to Reynolds number 107. J. Comput. Phys. 186, 178197.CrossRefGoogle Scholar
Nagata, M. 1997 Three-dimensional traveling-wave solutions in plane Couette flow. Phys. Rev. E 55 (2), 20232025.Google Scholar
Pfenniger, W. 1961 Transition in the inlet length of tubes at high Reynolds numbers. In Boundary Layer and Flow Control (ed. Lachman, G. V.), pp. 970980. Pergamon.Google Scholar
Pringle, C. C. T., Duguet, Y. & Kerswell, R. R. 2009 Highly symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. Lond. A 367, 457472.Google Scholar
Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys. Rev. Lett. 99 (7), 074502.CrossRefGoogle ScholarPubMed
Pugh, J. D. & Saffman, P. G. 1988 Two-dimensional superharmonic stability of finite-amplitude waves in plane Poiseuille flow. J. Fluid Mech. 194, 295307.Google Scholar
Quarteroni, A., Sacco, R. & Saleri, F. 2007 Numerical Mathematics, 2nd edn. Springer.Google Scholar
Rand, D. 1982 Dynamics and symmetry: predictions for modulated waves in rotating fluids. Arch. Rat. Mech. Anal. 79 (1), 137.CrossRefGoogle Scholar
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 174, 935982.Google Scholar
Sanchez, J., Marques, F. & Lopez, J. M. 2002 A continuation and bifurcation technique for Navier–Stokes flows. J. Comput. Phys. 180 (1), 7898.Google Scholar
Schmid, P. J. & Henningson, D. S. 1994 Optimal energy growth in Hagen–Poiseuille flow. J. Fluid Mech. 277, 197225.CrossRefGoogle Scholar
Schneider, T. M., Eckhardt, B. & Vollmer, J. 2007 a Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75 (6), 066313.Google Scholar
Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 b Turbulence transition and edge of chaos in pipe flow. Phys. Rev. Lett. 99 (3), 034502.Google Scholar
Shan, H., Ma, B., Zhang, Z. & Nieuwstadt, F. T. M. 1999 On the spatial evolution of a wall-imposed periodic disturbance in pipe Poiseuille flow at Re = 3000. Part 1. Subcritical disturbance. J. Fluid Mech. 398, 181224.Google Scholar
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96 (17), 174101.CrossRefGoogle Scholar
Smale, S. 1967 Differentiable dynamical systems. I. Diffeomorphisms. Bull. Am. Math. Soc. 73 (6), 747817.CrossRefGoogle Scholar
Soibelman, I. & Meiron, D. I. 1991 Finite-amplitude bifurcations in plane Poiseuille flow: two-dimensional Hopf-bifurcation. J. Fluid Mech. 229, 389416.CrossRefGoogle Scholar
Takens, F. 1974 Singularities of vector fields. Publ. Math. IHES 43, 47100.Google Scholar
Viswanath, D. 2007 Recurring motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.CrossRefGoogle Scholar
Waleffe, F. 1995 Hydrodynamic stability and turbulence: beyond transients to a self-sustaining process. Stud. Appl. Maths 95 (3), 319343.CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.Google Scholar
Wang, J., Gibson, J. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98 (20), 204501.CrossRefGoogle ScholarPubMed
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.Google Scholar
Wiggins, S. 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer.Google Scholar
Willis, A. P. & Kerswell, R. R. 2008 Coherent structures in localized and global pipe turbulence. Phys. Rev. Lett. 100 (12).CrossRefGoogle ScholarPubMed
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281335.Google Scholar
Wygnanski, I. J., Sokolov, M. & Friedman, D. 1975 On transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech. 69, 283304.Google Scholar
Zikanov, O. Y. 1996 On the instability of pipe Poiseuille flow. Phys. Fluids 8 (11), 29232932.Google Scholar

Mellibovsky et al. supplementary movie

Upper-branch travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: Axial velocity contours relative to the parabolic profile at the marked z-cross-section (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Current axial position indicated with a black line/ring.

Download Mellibovsky et al. supplementary movie(Video)
Video 3.8 MB

Mellibovsky et al. supplementary movie

Upper-branch travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: Axial velocity contours relative to the parabolic profile at the marked z-cross-section (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Current axial position indicated with a black line/ring.

Download Mellibovsky et al. supplementary movie(Video)
Video 1.5 MB

Mellibovsky et al. supplementary movie

Lower-branch travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: Axial velocity contours relative to the parabolic profile at the marked z-cross-section (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Current axial position indicated with a black line/ring.

Download Mellibovsky et al. supplementary movie(Video)
Video 3.7 MB

Mellibovsky et al. supplementary movie

Lower-branch travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: Axial velocity contours relative to the parabolic profile at the marked z-cross-section (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Current axial position indicated with a black line/ring.

Download Mellibovsky et al. supplementary movie(Video)
Video 1.4 MB

Mellibovsky et al. supplementary material

Modulated travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: axial phase-speed (cz) time-series and three-dimensional energy (ε3D) vs mean axial pressure gradient ((∇p)z) phase map. Middle right: Axial velocity contours relative to the parabolic profile at the z=0 and z=Λ/4 cross-sections (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Green/Blue dashed line and square refer to the upper/lower branch travelling wave (twub/twlb). The red dot following the solid line and loop represents the modulated wave (mtw). The phase map dashed loop is an unstable modulated wave at the same parameter values. Axial cross-sections shown are indicated with black lines/rings.

Download Mellibovsky et al. supplementary material(Video)
Video 7.7 MB

Mellibovsky et al. supplementary material

Modulated travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: axial phase-speed (cz) time-series and three-dimensional energy (ε3D) vs mean axial pressure gradient ((∇p)z) phase map. Middle right: Axial velocity contours relative to the parabolic profile at the z=0 and z=Λ/4 cross-sections (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Green/Blue dashed line and square refer to the upper/lower branch travelling wave (twub/twlb). The red dot following the solid line and loop represents the modulated wave (mtw). The phase map dashed loop is an unstable modulated wave at the same parameter values. Axial cross-sections shown are indicated with black lines/rings.

Download Mellibovsky et al. supplementary material(Video)
Video 3.8 MB

Mellibovsky et al. supplementary movie

Unstable modulated travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: axial phase-speed (cz) time-series and three-dimensional energy (ε3D) vs mean axial pressure gradient ((∇p)z) phase map. Middle right: Axial velocity contours relative to the parabolic profile at the z=0 and z=Λ/4 cross-sections (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Green/Blue dashed line and square refer to the upper/lower branch travelling wave (twub/twlb). The red dot following the solid line and loop represents the modulated wave (mtw). The phase map dashed loop is the stable modulated wave coexisting at the same parameter values. Axial cross-sections shown are indicated with black lines/rings.

Download Mellibovsky et al. supplementary movie(Video)
Video 12.1 MB

Mellibovsky et al. supplementary movie

Unstable modulated travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: axial phase-speed (cz) time-series and three-dimensional energy (ε3D) vs mean axial pressure gradient ((∇p)z) phase map. Middle right: Axial velocity contours relative to the parabolic profile at the z=0 and z=Λ/4 cross-sections (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Green/Blue dashed line and square refer to the upper/lower branch travelling wave (twub/twlb). The red dot following the solid line and loop represents the modulated wave (mtw). The phase map dashed loop is the stable modulated wave coexisting at the same parameter values. Axial cross-sections shown are indicated with black lines/rings.

Download Mellibovsky et al. supplementary movie(Video)
Video 6.8 MB