Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T11:02:42.297Z Has data issue: false hasContentIssue false

Effects of forest fragmentation on assemblages of pollinators and floral visitors to male- and female-phase inflorescences of Astrocaryum mexicanum (Arecaceae) in a Mexican rain forest

Published online by Cambridge University Press:  17 December 2010

Armando Aguirre*
Affiliation:
Instituto de Ecología, A.C. Departamento de Biología Evolutiva, Apartado Postal 63, Xalapa, Veracruz 91000, México
Roger Guevara
Affiliation:
Instituto de Ecología, A.C. Departamento de Biología Evolutiva, Apartado Postal 63, Xalapa, Veracruz 91000, México Stanford University, Department of Biological Sciences, 371 Serra Mall, Stanford, CA 94305, USA
Rodolfo Dirzo
Affiliation:
Stanford University, Department of Biological Sciences, 371 Serra Mall, Stanford, CA 94305, USA
*
1Corresponding author. Email: armando.aguirre69@gmail.com

Abstract:

We examined the consequences of habitat fragmentation on the assemblage of floral visitors and pollinators to male- and female-phase inflorescences of the understorey dominant palm Astrocaryum mexicanum at the Los Tuxtlas tropical rain forest. In six forest fragments ranging from 2 to 700 ha, we collected all floral visitors, pollinators and non-pollinators, to male- and female-phase inflorescences at the time of their greatest activity. We used multivariate and mixed-effects models to explore differences in guild composition between sexual phases of inflorescences and the effects of forest fragment size on several metrics of the assemblages of floral visitors. We detected 228 786 floral visitors, grouped into 57 species, across the six forest fragments. On average, abundance and species richness of floral visitors to female-phase inflorescences were higher than to male-phase ones. Forest fragmentation had no effect on species richness but negatively affected Shannon's diversity index. Overall, the most abundant species of floral visitors were predominantly found in inflorescences of plants from the large fragments. In contrast, most of the less common species were more abundant in the smallest fragments. The abundance of pollinators (those found on inflorescences of both phases and dusted with pollen that was carried to flower stigmas), and the ratio of pollinators to other floral visitors, increased with fragment size in both sexual phases of the inflorescences but these effects were significantly stronger on male-phase inflorescences than on female-phase inflorescences. These results show that tropical forest fragmentation correlates with changes in the composition of flower visitors to a dominant palm, with a reduction in the abundance of pollinators, but that such changes co-vary with the sexual phase of the plants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGUILAR, R., ASHWORTH, L., GALETTO, R. & AIZEN, M. 2006. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecology Letters 9:968980.CrossRefGoogle ScholarPubMed
AGUIRRE, A. & DIRZO, R. 2008. Effects of fragmentation on pollinator abundance and fruit set of an abundant understory palm in a Mexican tropical forest. Biological Conservation 141:375384.CrossRefGoogle Scholar
ANDERSON, B. A., OVERAL, W. L. & HENDERSON, A. 1988. Pollination ecology of a forest-dominant palm (Orbignya phalerata Mart.) in Northern Brazil. Biotropica 20:192205.CrossRefGoogle Scholar
ARROYO-RODRÍGUEZ, V., AGUIRRE, A., BENÍTEZ-MALVIDO, J. & MANDUJANO, S. 2007. Impact of rain forest fragmentation on the population size of a structurally important palm species: Astrocaryum mexicanum at Los Tuxtlas, México. Biological Conservation 138:198206.CrossRefGoogle Scholar
BAWA, K. S. 1990. Plant-pollinator interactions in tropical forest. Annual Review of Ecology and Systematic 21:399422.CrossRefGoogle Scholar
BERNAL, R. & ERVIK, F. 1996. Floral biology and pollination of the dioecious palm Phytelephas seemannii in Colombia: an adaptation to staphylinid beetles. Biotropica 28:682696.CrossRefGoogle Scholar
BURD, M. 1994. Bateman's principle and plant reproduction: the role of pollen limitation in fruit and seed set. The Botanical Review 60:83139.CrossRefGoogle Scholar
BÚRQUEZ, A., SARUKHÁN, J. & PEDROZA, A. L. 1987. Floral biology of a primary rain forest palm, Astrocaryum mexicanum Liebm. Botanical Journal of the Linnean Society 94:407419.CrossRefGoogle Scholar
CONSIGLIO, T. K. & BOURNE, G. R. 2001. Pollination and breeding system of a neotropical palm Astrocaryum vulgare in Guyana: a test of the predictability of syndromes. Journal of Tropical Ecology 17:577592.CrossRefGoogle Scholar
CUARTAS-HERNANDEZ, S. & NUÑEZ-FARFAN, J. 2006. The genetic structure of the tropical understory herb Dieffenbachia seguinae L. before and after forest fragmentation. Evolutionary Ecology Research 8:10611075.Google Scholar
CUARTAS-HERNANDEZ, S., NUÑEZ-FARFAN, J. & SMOUSE, P. E. 2010. Restricted pollen flow of Dieffenbachia seguine populations in fragmented and continuous tropical forest. Heredity 105:197204.CrossRefGoogle ScholarPubMed
DIDHAM, R. K., GHAZOUL, J., STORK, N. E. & DAVIS, A. J. 1996. Insects in fragmented forests: a functional approach. Trends in Ecology and Evolution 11:255260.CrossRefGoogle ScholarPubMed
DIRZO, R. & MIRANDA, A. 1991. El limite boreal de la selva tropical húmeda en el continente Americano: contracción de la vegetación y solución de una controversia. Interciencia 16:240247.Google Scholar
ERVIK, F. & BERNAL, R. 1996. Floral biology and insect visitation of the monoecious palm Prestoea decurrens on the Pacific coast of Colombia. Principes 40:8692.Google Scholar
ERVIK, F. & FEIL, J. P. 1997. Reproductive biology of the monoecious understory palm Prestoea schultzeana in Amazonian Ecuador. Biotropica 29:309317.CrossRefGoogle Scholar
ERVIK, F., TOLLSTEN, L. & KNUDSEN, J. T. 1999. Floral scent chemistry and pollination ecology in phytelephantoid palms (Arecaceae). Plant Systematics and Evolution 217:279297.CrossRefGoogle Scholar
GONZÁLEZ-SORIANO, E., DIRZO, R. & VOGT, R. C. 1997. Historia Natural de Los Tuxtlas. CONABIO-UNAM, México, D.F.647 pp.Google Scholar
HENDERSON, A. 1986. A review of pollination studies in the Palmae. Botanical Review 52: 221259.CrossRefGoogle Scholar
JANSE, J. & VERHAEGH, J. J. 1993. Effects of varying pollen load on fruit set, seed set and seedling performance in apple and pear. Sexual Plant Reproduction 6:122126.CrossRefGoogle Scholar
JENNERSTEN, O. 1988. Pollination of Dianthus deltoides (Caryophyllaceae), effects of habitat fragmentation on visitation and seed set. Conservation Biology 2:359366.CrossRefGoogle Scholar
JOHNSON, S. D. & STEINER, K. E. 2000. Generalization versus specialization in plant pollination systems. Trends in Ecology and Evolution 15:140143.CrossRefGoogle ScholarPubMed
KEARNS, C. A., INOUYE, D. W. & WASER, N. M. 1998. Endangered mutualisms: the conservation of plant pollinator interactions. Annual Review of Ecology and Systematics 29:83112CrossRefGoogle Scholar
KNUDSEN, J. T., TOLLSTEN, L. & ERVIK, F. 2001. Flower scent and pollination in selected neotropical palms. Plant Biology 3:642653.CrossRefGoogle Scholar
KUCHMEISTER, H., SILBERBAUER-GOTTSBERGER, I. & GOTTSBERGER, G. 1997. Flowering, pollination, nectar standing crop, and nectaries of Euterpe precatoria (Areacaceae), and Amazonian rain forest palm. Plant Systematics and Evolution 206:7197.CrossRefGoogle Scholar
LAURANCE, W. F. 2004. Forest-climate interactions in fragmented tropical landscapes. Philosophical Transactions of the Royal Society of London B 359:345352.CrossRefGoogle ScholarPubMed
MARTÍNEZ-RAMOS, M. 1997. Astrocaryum mexicanum Liebm. Pp. 9297 in González-Soriano, E., Dirzo, R. & Vogt, R. C. (eds.). Historia natural de Los Tuxtlas. CONABIO-UNAM, México, D.F.Google Scholar
MELÉNDEZ-RAMÍREZ, V., PARRA-TABLA, V., KEVAN, P. G., RAMÍREZ-MORILLO, I., HARRIES, H., FERNÁNDEZ-BARRERA, M. & ZIZUMBO-VILLAREAL, D. 2004. Mixed mating strategies and pollination by insects and wind in coconut palm (Cocos nucifera L. (Arecaceae): importance in production and selection. Agricultural and Forest Entomology 6:155163.CrossRefGoogle Scholar
MENDOZA, E., FAY, J. & DIRZO, R. 2005. A quantitative study of forest fragmentation in a neotropical area in southeast Mexico. Revista Chilena de Historia Natural 78:451467.CrossRefGoogle Scholar
MURCIA, C. 1996. Forest fragmentation and the pollination of neotropical plants. Pp. 1936 in Schelhas, J. & Greenberg, R. (eds.). Forest patches in tropical landscapes. Island Press, Washington, DC.Google Scholar
NÚÑEZ, L. A., BERNAL, R. & KNUDSEN, J. T. 2005. Diurnal palm pollination by mystropine beetles: is it weather-related? Plant Systematics and Evolution 254:149171.CrossRefGoogle Scholar
NÚÑEZ-AVELLANEDA, L. A. & ROJAS-ROBLES, R. 2008. Reproductive biology and pollination ecology of the milpesos palm Oenocarpus bataua in the Colombian Andes. Caldasia 30:101125.Google Scholar
PIÑERO, D., MARTÍNEZ-RAMOS, M. & SARUKHÁN, J. 1984. A population model of Astrocaryum mexicanum and sensitivity analysis of its finite rate of increase. Journal of Ecology 72:977991.CrossRefGoogle Scholar
RICHARDSON, T. E. & STEPHENSON, A. G. 1992. Effects of parentage and size of the pollen load on progeny performance in Campanula americana. Evolution 46:17311739.CrossRefGoogle ScholarPubMed
SCARIOT, A. 1999. Forest fragmentation effects on palm diversity in central Amazonia. Journal of Ecology 87:6676.CrossRefGoogle Scholar
SIEFKE, R. & BERNAL, R. 2004. Floral biology and insect visitors of the understory palm Synechantus warscewiczianus at the Pacific Coast of Colombia. Palms 48:3341.Google Scholar
STEFFAN-DEWENTER, I. & TSCHARNTKE, T. 1999. Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432440.CrossRefGoogle ScholarPubMed
SUÁREZ-MONTES, P., FORNONI, J. & NUÑEZ-FARFAN, J. 2010. Conservation genetics of the endemic Mexican Heliconia uxpanapensis in Los Tuxtlas tropical rain forest. Biotropica DOI: 10.1111/j.1744–7429.2010.00657.x.CrossRefGoogle Scholar
TURNER, I. M. 1996. Species loss in fragments of tropical rain forest: a review of evidence. Journal of Applied Ecology 33:200209.CrossRefGoogle Scholar
TYLIANAKIS, J. M., DIDHAM, R. K., BASCOMPTE, J. & WARDLE, D. A. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11:13511363.CrossRefGoogle ScholarPubMed