Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T15:54:43.276Z Has data issue: false hasContentIssue false

Variational principles of guiding centre motion

Published online by Cambridge University Press:  13 March 2009

Robert G. Littlejohn
Affiliation:
Department of Physics, University of California, Los Angeles, California 90024

Abstract

An elementary but rigorous derivation is given for a variational principle for guiding centre motion. The equations of motion resulting from the variational principle (the drift equations) possess exact conservation laws for phase volume, energy (for time-independent systems), and angular momentum (for azimuthally symmetric systems). The results of carrying the variational principle to higher order in the adiabatic parameter are displayed. The behaviour of guiding centre motion in azimuthally symmetric fields is discussed, and the role of angular momentum is clarified. The application of variational principles in the derivation and solution of gyrokinetic equations is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, V. I. 1978 Mathematical Methods of Classical Mechanics. Springer.Google Scholar
Boozer, A. H. 1980 Phys. Fluids, 23, 904.CrossRefGoogle Scholar
Cary, J. R. 1979 Ph.D. Thesis, University of California, Berkeley.Google Scholar
Cary, J. R. 1981 Phys. Rep. 79, 131.CrossRefGoogle Scholar
Cary, J. R. & Littlejohn, R. G. 1982 (To be published.)Google Scholar
Dragt, A. J. & Finn, J. M. 1976 J. Math. Phys. 17, 2215.Google Scholar
Frieman, E. A. & Chen, L. 1982 Phys. Fluids, 25, 502.CrossRefGoogle Scholar
Goldstein, H. 1980 Classical Mechanics, 2nd ed.Addison-Wesley.Google Scholar
Hastie, R. J., Taylor, J. B. & Haas, F. A. 1967 Ann. Phys. 41, 302.CrossRefGoogle Scholar
Kruskal, M. D. 1965 Plasma Physics, p. 67. IAEA.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1969 Mechanics, 2nd ed.Pergamon.Google Scholar
Littlejohn, R. G. 1979 J. Math. Phys. 20, 2445.CrossRefGoogle Scholar
Littlejohn, R. G. 1981 Phys. Fluids, 24, 1730.Google Scholar
Littlejohn, R. G. 1982 a J. Math. Phys. 23, 742.CrossRefGoogle Scholar
Littlejohn, R. G. 1982 b Physica Scripta, (To be published.)Google Scholar
Morozov, A. I. & Solov'ev, L. S. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 2, p. 201. Plenum.Google Scholar
Northrop, T. G. 1963 The Adiabatic Motion of Charged Particles. Interscience.CrossRefGoogle Scholar
Northrop, T. G. & Rome, J. A. 1978 Phys. Fluids, 21, 384.CrossRefGoogle Scholar
Taylor, J. B. 1964 Phys. Fluids, 7, 767.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Interscience.Google Scholar
Wong, H. V. 1981 University of Texas Fusion Research Center Report FRCR 230.Google Scholar