Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T10:58:37.565Z Has data issue: false hasContentIssue false

Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature

Published online by Cambridge University Press:  29 March 2006

R. M. GREENBERG
Affiliation:
Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 USA.

Abstract

Transient changes in calcium (Ca2+) levels regulate a wide variety of cellular processes, and cells employ both intracellular and extracellular sources of Ca2+ for signalling. Praziquantel, the drug of choice against schistosomiasis, disrupts Ca2+ homeostasis in adult worms. This review will focus on voltage-gated Ca2+ channels, which regulate levels of intracellular Ca2+ by coupling membrane depolarization to entry of extracellular Ca2+. Ca2+ channels are members of the ion channel superfamily and represent essential components of neurons, muscles and other excitable cells. Ca2+ channels are membrane protein complexes in which the pore-forming α1 subunit is modulated by auxiliary subunits such as β and α2δ. Schistosomes express two Ca2+ channel β subunit subtypes: a conventional subtype similar to β subunits found in other vertebrates and invertebrates and a novel variant subtype with unusual structural and functional properties. The variant schistosome β subunit confers praziquantel sensitivity to an otherwise praziquantel-insensitive mammalian Ca2+ channel, implicating it as a mediator of praziquantel action.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AGBOH, K. C., WEBB, T. E., EVANS, R. J. & ENNION, S. J. ( 2004). Functional characterization of a P2X receptor from Schistosoma mansoni. Journal of Biological Chemistry 40, 4165041657.CrossRefGoogle Scholar
ANDREWS, P. ( 1985). Praziquantel: mechanisms of anti-schistosomal activity. Pharmacology and Therapeutics 29, 129156.CrossRefGoogle Scholar
ANDREWS, P.THOMAS, H., POHLKE, R. & SEUBERT, J. ( 1983). Praziquantel. Medicinal Research Reviews 3, 147200.CrossRefGoogle Scholar
ARIKKATH, J. & CAMPBELL, K. P. ( 2003). Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Current Opinion in Neurobiology 13, 298307.CrossRefGoogle Scholar
AUGUSTINE, G. J., SANTAMARIA, F. & TANAKA, K. ( 2003). Local calcium signalling in neurons. Neuron 40, 331346.CrossRefGoogle Scholar
BECKER, B., MEHLHORN, H., ANDREWS, P., THOMAS, H. & ECKERT, J. ( 1980). Light and electron microscopic studies on the effect of praziquantel on Schistosoma mansoni, Dicrocoelium dendriticum, and Fasciola hepatica (Trematoda) in vitro. Zeitschrift für Parasitenkunde 63, 113128.CrossRefGoogle Scholar
BERRIDGE, M. J., BOOTMAN, M. D. & RODERICK, H. L. ( 2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews: Molecular Cell Biology 4, 517529.CrossRefGoogle Scholar
BICHET, D., CORNET, V., GEIB, S., CARLIER, E., VOLSEN, S., HOSHI, T., MORI, Y. & DE WAARD, M. ( 2000). The I-II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 25, 177190.CrossRefGoogle Scholar
BIRNBAUMER, L., QIN, N., OLCESE, R., TAREILUS, E., PLATANO, D., COSTANTIN, J. & STEFANI, E. ( 1998). Structures and functions of calcium channel β subunits. Journal of Bioenergetics and Biomembranes 30, 357375.CrossRefGoogle Scholar
BLAIR, K. L. & ANDERSON, P. A. V. ( 1993). Properties of voltage-activated ionic currents in cells from the brains of the triclad flatworm Bdelloura candida. Journal of Experimental Biology 185, 267286.Google Scholar
BLAIR, K. L. & ANDERSON, P. A. V. ( 1994). Physiological and pharmacological properties of muscle cells isolated from the flatworm Bdelloura candida (Triclada). Parasitology 109, 325335.CrossRefGoogle Scholar
BLAIR, K. L. & ANDERSON, P. A. V. ( 1996). Physiology and pharmacology of turbellarian neuromuscular systems. Parasitology 113, S73S82.CrossRefGoogle Scholar
BLAIR, K. L., BENNETT, J. L. & PAX, R. A. ( 1992). Praziquantel: physiological evidence for its site(s) of action in magnesium-paralysed Schistosoma mansoni. Parasitology 104, 5966.CrossRefGoogle Scholar
BONN, D. ( 2004). Schistosomiasis: a new target for calcium channel blockers? The Lancet Infectious Diseases 4, 190.Google Scholar
BOOTMAN, M. D., LIPP, P. & BERRIDGE, M. J. ( 2001). The organisation and functions of local Ca2+ signals. Journal of Cell Science 114, 22132222.Google Scholar
CATTERALL, W. A. ( 2000). Structure and regulation of voltage-gated Ca2+ channels. Annual Review of Cell and Developmental Biology 16, 521555.CrossRefGoogle Scholar
CHEN, Y.-H., LI, M.-H., ZHANG, Y., HE, L.-L., YAMADA, Y., FITZMAURICE, A., SHEN, Y., ZHANG, H., TONG, L. & YANG, J. ( 2004). Structural basis of the α1-β subunit interaction of voltage-gated Ca2+ channels. Nature 429, 675680.CrossRefGoogle Scholar
CHUBB, J. M., BENNETT, J. L., AKERA, T. & BRODY, T. M. ( 1978). Effects of praziquantel, a new anthelmintic, on electromechanical properties of isolated rat atria. Journal of Pharmacology and Experimental Therapeutics 207, 284293.Google Scholar
CIOLI, D. ( 2000). Praziquantel: is there real resistance and are there alternatives? Current Opinion in Infectious Diseases 13, 659663.Google Scholar
CIOLI, D. & PICA-MATTOCCIA, L. ( 2003). Praziquantel. Parasitological Research 90, S3S9.Google Scholar
COBBETT, P. & DAY, T. A. ( 2003). Functional voltage-gated Ca2+ channels in muscle fibers of the platyhelminth Dugesia tigrina. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology 134, 593605.CrossRefGoogle Scholar
CUNHA, V. M. & NOËL, F. ( 1997). Praziquantel has no direct effect on (Na+-K+)-ATPases and (Ca2+-Mg2+)-ATPases of Schistosoma mansoni. Life Sciences 60, 289294.CrossRefGoogle Scholar
CUNHA, V. M. N., REIS, J. M. A. & NOËL, F. ( 1996). Evidence for the presence of two (Ca2+-Mg2+)ATPases with different sensitivities to thapsigargin and cyclopiazonic acid in the human flatworm Schistosoma mansoni. Comparative Biochemistry and Physiology 114B, 199205.CrossRefGoogle Scholar
DAY, T. A., BENNETT, J. L. & PAX, R. A. ( 1992). Praziquantel: the enigmatic antiparasitic. Parasitology Today 8, 342344.CrossRefGoogle Scholar
DAY, T. A., BENNETT, J. L. & PAX, R. A. ( 1994). Serotonin and its requirement for maintenance of contractility in muscle fibres isolated from Schistosoma mansoni. Parasitology 108, 425432.CrossRefGoogle Scholar
DAY, T. A., HAITHCOCK, J., KIMBER, M. & MAULE, A. G. ( 2000). Functional ryanodine receptor channels in flatworm muscle fibres. Parasitology 120, 417422.CrossRefGoogle Scholar
DAY, T. A., MAULE, A. G., SHAW, C., HALTON, D. W., MOORE, S., BENNETT, J. L. & PAX, R. A. ( 1994). Platyhelminth FMRFamide-related peptides (FaRPs) contract Schistosoma mansoni (Trematoda: Digenea) muscle fibres in vitro. Parasitology 109, 455459.CrossRefGoogle Scholar
DAY, T. A., ORR, N., BENNETT, J. L. & PAX, R. A. ( 1993). Voltage-gated currents in muscle cells of Schistosoma mansoni. Parasitology 106, 471477.CrossRefGoogle Scholar
DE mendonça, M. R. L., BECK, E., RUMJANEK, F. D. & GOFFEAU, A. ( 1995). Cloning and characterization of a putative calcium-transporting ATPase gene from Schistosoma mansoni. Molecular and Biochemical Parasitology 72, 129139.CrossRefGoogle Scholar
DEWAARD, M. D., PRAGNELL, M. & CAMPBELL, K. P. ( 1994). Ca2+ channel regulation by a conserved β subunit domain. Neuron 13, 495503.CrossRefGoogle Scholar
DIMITRATOS, S. D., WOODS, D. F., STATHAKIS, D. G. & BRYANT, P. J. ( 1999). Signalling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. Bioessays 21, 912921.3.0.CO;2-Z>CrossRefGoogle Scholar
DOENHOFF, M. J., KUSEL, J. R., COLES, G. C. & CIOLI, D. ( 2002). Resistance of Schistosoma mansoni to praziquantel: is there a problem? Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 465469.Google Scholar
DOLPHIN, A. C. ( 2003). β subunits of voltage-gated calcium channels. Journal of Bioenergetics and Biomembranes 35, 599620.CrossRefGoogle Scholar
DOYLE, D. A., CABRAL, J. M., PFUETZNER, R. A., KUO, A., GULBIS, J. M., DOHEN, S. L., CHAIR, B. T. & MACKINNON, R. ( 1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 6977.CrossRefGoogle Scholar
ENGELS, D., CHITSULO, L., MONTRESOR, A. & SAVIOLI, L. ( 2002). The global epidemiological situation of schistosomiasis and new approaches to control and research. Acta Tropica 82, 139146.CrossRefGoogle Scholar
FENWICK, A., SAVIOLI, L., ENGELS, D., BERGQUIST, N. R. & TODD, M. H. ( 2003). Drugs for the control of parasitic diseases: current status and development in schistosomiasis. Trends in Parasitology 19, 509515.CrossRefGoogle Scholar
FETTERER, R. H., PAX, R. A. & BENNETT, J. L. ( 1980). Praziquantel, potassium and 2,4-dinitrophenol: analysis of their action on the musculature of Schistosoma mansoni. European Journal of Pharmacology 64, 3138.CrossRefGoogle Scholar
GARDNER, D. R. & BREZDEN, B. L. ( 1984). The sites of action of praziquantel in smooth muscle of Lymnaea stagnalis. Canadian Journal of Physiology and Pharmacology 62, 282287.CrossRefGoogle Scholar
HAGAN, P., APPLETON, C. C., COLES, G. C., KUSEL, J. R. & TCHUEM-TCHUENTE, L. A. ( 2004). Schistosomiasis control: keep taking the tablets. Trends in Parasitology 20, 9297.CrossRefGoogle Scholar
HANLON, M. R., BERROW, N. S., DOLPHIN, A. C. & WALLACE, B. A. ( 1999). Modelling of a voltage-dependent Ca2+ channel β subunit as a basis for understanding its functional properties. FEBS Letters 445, 366370.CrossRefGoogle Scholar
HANLON, M. R. & WALLACE, B. A. ( 2002). Structure and function of voltage-dependent ion channel regulatory β subunits. Biochemistry 41, 28862894.CrossRefGoogle Scholar
HARDER, A. ( 2002). Chemotherapeutic approaches to schistosomes: current knowledge and outlook. Parasitology Research 88, 395397.Google Scholar
HARDER, A., GOOSSENS, J. & ANDREWS, P. ( 1988). Influence of praziquantel and Ca2+ on the bilayer-isotropic-hexagonal transition of model membranes. Molecular and Biochemical Parasitology 29, 5560.CrossRefGoogle Scholar
HARNETT, W. & KUSEL, J. R. ( 1986). Increased exposure of parasite antigens at the surface of adult male Schistosoma mansoni exposed to praziquantel in vitro. Parasitology 93, 401405.CrossRefGoogle Scholar
HEINEMANN, S. H., TERLAU, H. & IMOTO, K. ( 1992). Molecular basis for pharmacological differences between brain and cardiac sodium channels. Pflugers Archives 422, 9092.CrossRefGoogle Scholar
HOFMANN, F., LACINOVA, L. & KLUGBAUER, N. ( 1999). Voltage-dependent calcium channels: from structure to function. Reviews of Physiology, Biochemistry, and Pharmacology 139, 3387.CrossRefGoogle Scholar
HU, W., BRINDLEY, P. J., MCMANUS, D. P., FENG, Z. & HAN, Z.-G. ( 2004). Schistosome transcriptomes: new insights into the parasite and schistosomiasis. Trends in Molecular Medicine 10, 217225.CrossRefGoogle Scholar
JEZIORSKI, M. C., GREENBERG, R. M. & ANDERSON, P. A. V ( 2000 a). The molecular biology of invertebrate voltage-gated Ca2+ channels. Journal of Experimental Biology 203, 841856.Google Scholar
JEZIORSKI, M. C., GREENBERG, R. M. & ANDERSON, P. A. V ( 2000 b). Calcium channel β subunits differentially modulate recovery of the channel from inactivation. FEBS Letters 483, 125130.Google Scholar
KAMP, T. J. & HELL, J. W. ( 2000). Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circulation Research 87, 10941102.CrossRefGoogle Scholar
KEEF, K. D., HUME, J. R. & ZHONG, J. ( 2001). Regulation of cardiac and smooth muscle Ca2+ channels (Cav1.2a,b) by protein kinases. American Journal of Physiology: Cell Physiology 281, C1743C1755.Google Scholar
KEENAN, L. & KOOPOWITZ, H. ( 1984). The ionic bases of action-potentials in identified flatworm neurons. Journal of Comparative Physiology 155, 197208.CrossRefGoogle Scholar
KOHN, A. B., ANDERSON, P. A. V., ROBERTS-MISTERLY, J. M. & GREENBERG, R. M. ( 2001 a). Schistosome calcium channel β subunits: unusual modulatory effects and potential role in the action of the antischistosomal drug praziquantel. Journal of Biological Chemistry 276, 3687336876.Google Scholar
KOHN, A. B., LEA, J. M., ROBERTS-MISTERLY, J. M., ANDERSON, P. A. V. & GREENBERG, R. M. ( 2001 b). Structure of three high voltage-activated Ca2+ channel α1 subunits from Schistosoma mansoni. Parasitology 123, 489497.Google Scholar
KOHN, A. B., ROBERTS-MISTERLY, J. M., ANDERSON, P. A. V. & GREENBERG, R. M. ( 2003 a). Creation by mutagenesis of a mammalian Ca2+ channel β subunit that confers praziquantel sensitivity to a mammalian Ca2+ channel. International Journal for Parasitology 33, 13031308.Google Scholar
KOHN, A. B., ROBERTS-MISTERLY, J. M., ANDERSON, P. A. V., KHAN, N. & GREENBERG, R. M. ( 2003 b). Specific residues in the Beta Interaction Domain of a schistosome Ca2+ channel β subunit are key to its role in sensitivity to the antischistosomal drug praziquantel. Parasitology 127, 349356.Google Scholar
KUMAR, S., TAMURA, K., JAKOBSEN, I. B. & NEI, M. ( 2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 12441245.CrossRefGoogle Scholar
LIMA, S. F., VIEIRA, L. Q., HARDER, A. & KUSEL, J. ( 1994). Effects of culture and praziquantel on membrane fluidity parameters of adult Schistosoma mansoni. Parasitology 109, 5764.CrossRefGoogle Scholar
LITTLETON, J. T. & GANETZKY, B. ( 2000). Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26, 3543.CrossRefGoogle Scholar
LIU, Y. H., QIAN, M. X., WANG, X. G., JIA, J., WANG, Q. N., JIANG, Y. F., WANG, R. Q., YAN, S. W., CHEN, B. Y., LI, J. S., QIU, Z. Y. & SHEN, J. K. ( 1986). Comparative efficacy of praziquantel and its optic isomers in experimental therapy of schistosomiasis japonica in rabbits. Chinese Medical Journal 99, 935940.Google Scholar
LOVERDE, P. T., HIRAI, H., MERRICK, J. M., LEE, N. H. & EL-SAYED, N. ( 2004). Schistosoma mansoni genome project: an update. Parasitology International 53, 183192.CrossRefGoogle Scholar
MCMANUS, D. P., HU, W., BRINDLEY, P. J., FENG, Z. & HAN, Z.-G. ( 2004). Schistosome transcriptome analysis at the cutting edge. Trends in Parasitology 20, 301304.CrossRefGoogle Scholar
MCLAREN, D. J. & HOCKLEY, D. J. ( 1977). Blood flukes have a double outer membrane. Nature 269, 147149.CrossRefGoogle Scholar
MEHLHORN, H., BECKER, B., ANDREWS, P., THOMAS, H. & FRENKEL, J. K. ( 1981). In vivo and in vitro experiments on the effects of praziquantel on Schistosoma mansoni. A light and electron microscopic study. Arzneimittel-Forschung 31, 544554.Google Scholar
NOËL, F., CUNHA, V. M. N., SILVA, C. L. M. & MENDONÇA-SILVA, D. L. ( 2001). Calcium homeostasis in Schistosoma mansoni. Memórias do Instituto Oswaldo Cruz 96, 8588.CrossRefGoogle Scholar
OPATOWSKI, Y., CHEN, C.-C., CAMPBELL, K. P. & HIRSCH, J. A. ( 2004). Structural analysis of the voltage-dependent Ca2+ channel β subunit functional core and its complex with the α1 interaction domain. Neuron 42, 387399.CrossRefGoogle Scholar
PAX, R. A., BENNETT, J. L. & FETTERER, J. L. ( 1978). A benzodiazepine derivative and praziquantel: effects on musculature of Schistosoma mansoni and Schistosoma japonicum. Naunyn-Schmiedberg's Archives of Pharmacology 304, 309315.CrossRefGoogle Scholar
PEREZ-REYES, E. ( 2003). Molecular physiology of low-voltage-activated T-type calcium channels. Physiological Reviews 83, 117161.CrossRefGoogle Scholar
PETEGEM, F. V., CLARK, K. A., CHATELAIN, F. C. & MINOR, D. L. ( 2004). Structure of a complex between a voltage-gated calcium channel β subunit and an α-subunit domain. Nature 429, 671675.CrossRefGoogle Scholar
PICA-MATTOCCIA, L. & CIOLI, D. ( 2004). Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in vitro praziquantel treatment. International Journal for Parasitology 34, 527533.CrossRefGoogle Scholar
PRAGNELL, M., DE WAARD, M., MORI, Y., TANABE, T., SNUTCH, T. P. & CAMPBELL, K. P. ( 1994). Calcium channel β-subunit binds to a conserved motif in the I–II cytoplasmic linker of the α1-subunit. Nature 368, 6770.CrossRefGoogle Scholar
PURI, T. S., GERHARDSTEIN, B. L., ZHAO, X.-L., LADNER, M. B. & HOSEY, M. M. ( 1997). Differential effects of subunit interactions on protein kinase A- and C- mediated phosphorylation of L-type calcium channels. Biochemistry 36, 96059615.CrossRefGoogle Scholar
REDMAN, C. A., ROBERTSON, A., FALLON, P. G., MODHA, J., KUSEL, J. R., DOENHOFF, M. J. & MARTIN, R. J. ( 1996). Praziquantel: an urgent and exciting challenge. Parasitology Today 12, 1420.CrossRefGoogle Scholar
ROSSI, D. & SORRENTINO, V. ( 2002). Molecular genetics of ryanodine receptors Ca2+ release channels. Cell Calcium 32, 307319.CrossRefGoogle Scholar
ROSSIE, S. ( 1999). Regulation of voltage-sensitive sodium and calcium channels by phosphorylation. Advances in Second Messenger and Phosphorylation Research 33, 2348.CrossRefGoogle Scholar
SABAH, A. A., FLETCHER, C., WEBBE, G. & DOENHOFF, M. J. ( 1986). Schistosoma mansoni: chemotherapy of infections of different ages. Experimental. Parasitology 61, 294303.CrossRefGoogle Scholar
SATIN, J., KYLE, J. W., CHEN, M., BELL, P., CRIBBS, L. L., FOZZARD, H. A. & ROGART, R. B. ( 1992). A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256, 12021205.CrossRefGoogle Scholar
SHOSHAN-BARMATZ, V. & ASHLEY, R. H. ( 1998). The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. International Review of Cytology 183, 185270.CrossRefGoogle Scholar
SILVA, C. L. M., CUNHA, V. M. N., MENDONÇA-SILVA, D. L. & NOËL, F. ( 1998). Evidence for ryanodine receptors in Schistosoma mansoni. Biochemical Pharmacology 56, 9971003.CrossRefGoogle Scholar
STAUDT, U., SCHMAHL, G., BLASCHKE, G. & MEHLHORN, H. ( 1992). Light and scanning electron microscopy studies on the effects of the enantiomers of praziquantel and its main metabolite on Schistosoma mansoni in vitro. Parasitology Research 78, 392397.CrossRefGoogle Scholar
TALLA, E., DE MENDONÇA, R. L., DEGAND, I., GOFFEAU, A. & GHISLAIN, M. ( 1998). Schistosoma mansoni Ca2+-ATPase SMA2 restores viability to yeast Ca2+-ATPase-deficient strains and functions in calcineurin-mediated Ca2+ tolerance. Journal of Biological Chemistry 273, 2783127840.CrossRefGoogle Scholar
TANAKA, M., OHMAE, H., UTSUNOMIYA, H., NARA, T., IRIE, Y. & YASURAOKA, K. ( 1989). A comparison of the antischistosomal effect of levo-and dextro-praziquantel on Schistosoma japonicum and S. mansoni in mice. American Journal of Tropical Medicine and Hygiene 41, 198203.CrossRefGoogle Scholar
THOMPSON, D. P., PAX, R. A. & BENNETT, J. L. ( 1982). Microelectrode studies of the tegument and tegumental compartments of male Schistosoma mansoni: an analysis of electrophysiological properties. Parasitology 85, 163178.CrossRefGoogle Scholar
THOMPSON, J. D., GIBSON, T. J., PLEWNIAK, F., JEANMOUGIN, F. & HIGGINS, D. G. ( 1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 48764882.CrossRefGoogle Scholar
VALLE, C., TROIANI, A. R., FESTUCCI, A., PICA-MATTOCCIA, L., LIBERTI, P., WOLSTENHOLME, A., FRANCKLOW, K., DOENHOFF, M. J. & CIOLI, D. ( 2003). Sequence and level of endogenous expression of calcium channel β subunits in Schistosoma mansoni displaying different susceptibilities to praziquantel. Molecular and Biochemical Parasitology 130, 111115.CrossRefGoogle Scholar
VAN DER WERF, M. J., DE VLAS, S. J., BROOKER, S., LOOMAN, C. W., NAGELKERKE, N. J., HABBEMA, J. D. & ENGELS, D. ( 2003). Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Tropica 86, 125139.CrossRefGoogle Scholar
VERJOVSKI-ALMEIDA, S., LEITE, L. C. C., DIAS-NETO, E., MENCK, C. F. M. & WILSON, R. A. ( 2004). Schistosome transcriptome: insights and perspectives for functional genomics. Trends in Parasitology 20, 304308.CrossRefGoogle Scholar
WALKER, D. & DEWAARD, M. ( 1998). Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends in Neuroscience 21, 148154.CrossRefGoogle Scholar
WALTER, M. & KURIS, A. ( 2003). Methods for the inhibiton of egg production in trematodes. U.S. Patent #6,514,963 B2.Google Scholar
WILLIAM, S., SABRA, A., RAMZY, F., MOUSA, M., DEMERDASH, Z., BENNETT, J. L., DAY, T. A. & BOTROS, S. ( 2001). Stability and reproductive fitness of Schistosoma mansoni isolates with decreased sensitivity to praziquantel. International Journal for Parasitology 31, 10931100.CrossRefGoogle Scholar
WOLDE MUSSIE, E., VANDE WAA, J., PAX, R. A., FETTERER, R. & BENNETT, J. L. ( 1982). Schistosoma mansoni: calcium efflux and effects of calcium-free media on responses of the adult male musculature to praziquantel and other agents inducing contraction. Experimental Parasitology 53, 270278.CrossRefGoogle Scholar
WU, M. H., WEI, C. C., XU, Z., YUAN, H. C., LIAN, W. N., YANG, Q. J., CHEN, M., JIANG, Q. W., WANG, C. Z. & ZHANG, S. J. ( 1991). Comparison of the therapeutic efficacy and side effects of a single dose of levo-praziquantel with mixed isomer praziquantel in 278 cases of schistosomiasis japonica. American Journal of Tropical Medicine and Hygiene 45, 345349.CrossRefGoogle Scholar
XIAO, S. H. & CATTO, B. A. ( 1989). Comparative in vitro and in vivo activity of racemic praziquantel and its levorotated isomer on Schistosoma mansoni. Journal of Infectious Diseases 159, 589592.Google Scholar
XIAO, S. H., CATTO, B. A. & WEBSTER, L. T. ( 1985). Effects of praziquantel on different developmental stages of Schistosoma mansoniin vitro and in vivo. Journal of Infectious Diseases 151, 11301137.CrossRefGoogle Scholar
XIAO, S. H., CHOLLET, J., BOOTH, M., WEISS, N. A. & TANNER, M. ( 1999). Therapeutic effect of praziquantel enantiomers in mice infected with Schistosoma mansoni. Transactions of the Royal Society of Tropical Medicine and Hygiene 93, 324325.CrossRefGoogle Scholar
XIAO, S. H., FRIEDMAN, P. A., CATTO, B. A. & WEBSTER, L. T. ( 1984). Praziquantel-induced vesicle formation in the tegument of male Schistosoma mansoni is calcium dependent. Journal of Parasitology 70, 177179.CrossRefGoogle Scholar
YUE, D. T. ( 2004). The dawn of high-resolution structure for the queen of the ion channels. Neuron 42, 357361.CrossRefGoogle Scholar