Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T22:07:18.576Z Has data issue: false hasContentIssue false

Postprandial Lipoprotein Metabolism

Published online by Cambridge University Press:  14 December 2007

Sunil Sethi
Affiliation:
Nutritional Metabolism Research Group, School of Biological Sciences, University of Surrey, Guildford GU2 5XH
M. J. Gibney
Affiliation:
Division of Nutritional Sciences, Department of Clinical Medicine, Trinity College Medical School, St James Hospital, Dublin 8, Ireland
Christine M. Williams*
Affiliation:
Nutritional Metabolism Research Group, School of Biological Sciences, University of Surrey, Guildford GU2 5XH
*
Send all correspondence to Dr Christine M. Williams at the above address.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Albrink, M. J., Fitzgerald, J. R. & Mann, E. B. (1958). Reduction of alimentary lipaemia by glucose. Metabolism 7, 162171.Google Scholar
Aldred, H. E., Lockwood, F. D. & Hardman, A. E. (1993). Moderate exercise prior to ingestion of a high fat meal decreases postprandial lipaemia. Proceedings of the Nutrition Society (In the Press).Google Scholar
Austin, M. A., King, M.-C., Vranizan, K. M. & Krauss, R. M. (1990). Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary heart disease risk. Circulation 82, 495506.CrossRefGoogle ScholarPubMed
Bainton, D., Miller, N. E., Bolton, C. H., Yarnell, J. W., Sweetnam, P. M., Baker, I. A., Lewis, B. & Elwood, P. C. (1992). Plasma triglyceride and high density lipoprotein cholesterol as predictors of ischaemic heart disease in British men. The Caerphilly and Speedwell Collaborative Heart Disease Studies. British Heart Journal 68, 6066.Google Scholar
Berr, F. & Kern, F. (1984). Plasma clearance of chylomicrons labeled with retinyl palmitate in healthy human subjects. Journal of Lipid Research 25, 805812.Google Scholar
Bersot, T. P., Innerarity, T. L., Pitas, R. E., Rall, S. C., Weisgraber, K. H. & Mahley, R. W. (1986). Fat feeding in humans induces lipoproteins of density less than 1·006 that are enriched in apolipoprotein [a] and that cause lipid accumulation in macrophages. Journal of Clinical Investigation 77, 622630.Google Scholar
Bhatnagar, D., Durrington, P. N. & Arrol, S. (1992). Postprandial plasma lipoprotein responses to a mixed meal in subjects with hyperapobeta-lipoproteinaemia. Clinical Biochemistry 25, 341343.CrossRefGoogle Scholar
Brouwer, C. B., de Bruin, T. W. A., Jansen, H. & Erkelens, D. W. (1993). Different clearance of intravenously administered olive oil and soybean-oil emulsions: role of hepatic lipase. American Journal of Clinical Nutrition 57, 533539.CrossRefGoogle ScholarPubMed
Campos, H., Genest, J. J., Blijlevens, E., McNamara, J. R., Jenner, J. L., Ordovas, J. M., Wilson, P. W. F. & Schaefer, E. J. (1992). Low density lipoprotein particle size and coronary artery disease. Arteriosclerosis and Thrombosis 12, 187195.Google Scholar
Carey, M. C., Small, D. M. & Bliss, C. M. (1983). Lipid digestion and absorption. Annual Review of Physiology 45, 651677.Google Scholar
Chen, Q., Florén, C.-H., Nilsson, Å. & Infante, R. (1991). Regulation of chylomicron remnant uptake in the human hepatoma cell-line Hep G2. Role of the low-density lipoprotein receptor. Biochimica et Biophysica Acta 1083, 173178.Google Scholar
Chen, Y.-D. I., Skowronski, R., Coulston, A. M., Pietarinen, J., Hollenbeck, C. B. & Reaven, G. M. (1992). Effect of acute variations in dietary fat and carbohydrate intake on retinyl ester content of intestinally derived lipoproteins. Journal of Clinical Endocrinology & Metabolism 74, 2832.Google ScholarPubMed
Choi, S. Y., Fong, L. G., Kirven, M. J. & Cooper, A. D. (1991). Use of an anti-low density lipoprotein receptor antibody to quantify the role of the LDL receptor in the removal of chylomicron remnants in the mouse in vivo. Journal of Clinical Investigation 88, 11731181.Google Scholar
Chung, B. H., Segrest, J. P., Smith, K., Griffin, F. M. & Brouillette, C. G. (1989). Lipolytic surface remnants of triglyceride-rich lipoproteins are cytotoxic to macrophages but not in the presence of high density lipoprotein. A possible mechanism of atherogenesis? Journal of Clinical Investigation 83, 13631374.Google Scholar
Cohen, J. C. (1989). Protein ingestion does not affect postprandial lipaemia or chylomicron-triglyceride clearance. European Journal of Clinical Nutrition 43, 497499.Google Scholar
Cohen, J. C. & Berger, G. M. (1990). Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. Journal of Lipid Research 31, 597602.Google Scholar
Cohen, J. C., Noakes, T. D. & Benade, A. J. S. (1989). Postprandial lipemia and chylomicron clearance in athletes and in sedentary men. American Journal of Clinical Nutrition 49, 443447.CrossRefGoogle ScholarPubMed
Cohen, J. C., Noakes, T. D. & Benade, A. J. S. (1988). Serum triglyceride responses to fatty meals: effects of meal fat content. American Journal of Clinical Nutrition 47, 825827.Google Scholar
Cohen, J. C. & Schall, R. (1988). Reassessing the effects of simple carbohydrates on the serum triglyceride responses to fat meals. American Journal of Clinical Nutrition 48, 10311034.CrossRefGoogle ScholarPubMed
Cohn, J. S., McNamara, J. R., Cohn, S. D., Ordovas, J. M. & Schaefer, E. J. (1988). Postprandial plasma lipoprotein changes in human subjects of different ages. Journal of Lipid Research 29, 469479.Google Scholar
Cohn, J. S., McNamara, J. R., Krasinski, S. D., Russell, R. M. & Schaefer, E. J. (1989). Role of triglyceride-rich lipoproteins from the liver and intestine in the etiology of postprandial peaks in plasma triglyceride concentration. Metabolism 38, 484490.CrossRefGoogle ScholarPubMed
Cryer, A., Riley, S. E., Williams, E. R. & Robinson, D. S. (1976). Effect of nutritional status on rat adipose tissue, muscle and post-heparin plasma clearing factor lipase activities: their relationship to triglyceride fatty acid uptake by fat-cells and to plasma insulin concentrations. Clinical Science and Molecular Medicine 50, 213221.Google Scholar
Dahlen, G. H., Guyton, J. R., Attar, M., Farmer, J. A., Kautz, J. A. & Gotto, A. M. (1986). Association of levels of lipoprotein Lp(a), plasma lipids, and other lipoproteins with coronary artery disease documented by angiography. Circulation 74, 758765.Google Scholar
Davidson, N. O., Kollmer, M. E. & Glickman, R. M. (1986). Apolipoprotein synthesis in rat small intestine: regulation by dietary triglyceride and biliary lipid. Journal of Lipid Research 27, 3039.Google Scholar
Davidson, N. O., Magun, A. M., Brasitus, T. A. & Glickman, R. M. (1987). Intestinal apolipoprotein A-I and B-48 metabolism: effects of sustained alterations in dietary triglyceride and mucosal cholesterol flux. Journal of Lipid Research 28, 388402.CrossRefGoogle ScholarPubMed
Demacker, P. N. M., Reijnen, I. G. M., Katan, M. B., Stuyt, P. M. J. & Stalenhoef, A. F. H. (1991). Increased removal of remnants of triglyceride-rich lipoproteins on a diet rich in polyunsaturated fatty acids. European Journal of Clinical Investigation 21, 197203.CrossRefGoogle Scholar
Durrington, P. N. (1989). Hyperlipidaemia: Diagnosis and Management. London: Butterworth.Google Scholar
Eckel, R. H. (1989). Lipoprotein lipase, a multifactorial enzyme relevant to common metabolic diseases. New England Journal of Medicine 320, 10601068.Google Scholar
Genest, J., Sniderman, A., Cianflone, K., Teng, B., Wacholder, S., Marcel, Y. & Kiviterovich, P. (1986). Hyperapobetalipoproteinemia. Plasma lipoprotein responses to oral fat load. Arteriosclerosis 6, 297304.CrossRefGoogle ScholarPubMed
Goldstein, J. L., Ho, Y. K., Brown, M. S., Innerarity, T. L. & Mahley, R. W. (1980). Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hyper-cholesterolemic canine β-very low density lipoproteins. Journal of Biological Chemistry 255, 18391848.CrossRefGoogle Scholar
Griglio, S., Sultan, F. & Lagrange, D. (1992). Role of hepatic lipase in the catabolism of chylomicron remnants in the rat. Diabète et Métabolisme 18, 150155.Google ScholarPubMed
Groot, P. H. E., van Stiphout, W. A. H. J., Krauss, X. H., Jensen, H., van Tol, A., van Ramshorst, E., Chin-On, S., Hofman, A., Cresswell, S. R. & Hanekes, L. (1991). Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arteriosclerosis and Thrombosis 11, 653662.CrossRefGoogle ScholarPubMed
Grundy, S. M. & Mok, H. Y. I. (1976). Chylomicron clearance in normal and hyperlipidemic man. Metabolism 25, 12251239.Google Scholar
Harris, W. S., Connor, W. E., Alam, N. & Illingworth, D. R. (1988). Reduction of postprandial triglyceridemia in humans by dietary n-3 fatty acids. Journal of Lipid Research 29, 14511460.Google Scholar
Heimberg, M., Dunn, G. D. & Wilcox, H. G. (1974). The derivation of plasma-free fatty acids from dietary neutral fat in man. Journal of Laboratory and Clinical Medicine 83, 393402.Google ScholarPubMed
Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gausepohl, H. & Stanley, K. K. (1988). Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO Journal 7, 41194127.CrossRefGoogle Scholar
Huff, M. W., Evans, A. J., Sawyez, C. G., Wolfe, B. M. & Nestel, P. J. (1991). Cholesterol accumulation in J774 macrophages induced by triglyceride-rich lipoproteins. Comparison of very low density lipoprotein from subjects with type III, IV and V hyperlipoproteinemias. Arteriosclerosis and Thrombosis 11, 221233.CrossRefGoogle ScholarPubMed
Imaizumi, K., Havel, R. J., Fainaru, M. & Vigne, J. L. (1978). Origin and transport of the A-I and arginine-rich apolipoproteins in mesenteric lymph of rats. Journal of Lipid Research 19, 10381046.Google Scholar
Johnston, J. M. (1968). Mechanism of fat absorption. In Handbook of Physiology, Section 6, Alimentary Canal, Vol. 3, pp. 13531375. Washington. D. C.: American Physiological Society.Google Scholar
Karpe, F., Tornvall, P., Olivecrona, T., Steiner, G., Carlson, L. A. & Hamsten, A. (1993). Composition of human low density lipoprotein: effects of postprandial triglyceride-rich lipoproteins, lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein. Atherosclerosis 98, 3349.Google Scholar
Kashyap, M. L., Barnhart, R. L., Srivastava, L. S., Perisutti, G., Allen, C., Hogg, E., Glueck, C. J. & Jackson, R. L. (1983). Alimentary lipemia: plasma high-density lipoproteins and apoliproteins CII and CIII in healthy subjects. American Journal of Clinical Nutrition 37, 233243.CrossRefGoogle Scholar
Kay, R. M., Rao, S., Arnott, C., Miller, N. E. & Lewis, B. (1980). Acute effects of the pattern of fat ingestion on plasma high-density lipoprotein components in man. Atherosclerosis 36, 567573.CrossRefGoogle ScholarPubMed
Kinnunen, P. K. J. & Ehnholm, C. (1976). Effect of serum and C-apoproteins from very low density lipoproteins on human postheparin plasma hepatic lipase. FEBS Letters 65, 354357.CrossRefGoogle ScholarPubMed
Krasinski, S. D., Cohn, J. S., Russell, R. M. & Schaefer, E. J. (1990). Postprandial plasma vitamin A metabolism in humans: a reassessment of the use of plasma retinyl esters as markers for intestinally derived chylomicrons and their remnants. Metabolism 39, 357365.CrossRefGoogle ScholarPubMed
Lefevre, M., Chuang, M.-Y. & Roheim, P. S. (1986). ApoA-IV metabolism in the rat: role of lipoprotein lipase and apolipoprotein transfer. Journal of Lipid Research 27, 11631173.Google Scholar
Levy, E., Roy, C. C., Goldstein, R., Bar-On, H. & Ziv, E. (1991). Metabolic fate of chylomicrons obtained from rats maintained on diets varying in fatty acid composition. Journal of the American College of Nutrition 10, 6978.Google Scholar
Lovegrove, J. A. L., Morgan, L. M., Isherwood, G. & Williams, C. M. (1993). Effect of addition of guar gum to an acute test meal on postprandial lipaemia in normal healthy adults. Proceedings of the Nutrition Society. (In the Press).Google Scholar
Mahley, R. W. (1982). Atherogenic hyperlipoproteinemia. The cellular and molecular biology of plasma lipoproteins altered by dietary fat and cholesterol. Medical Clinics of North America 66, 375402.Google Scholar
Mann, C. J., Yen, F. T., Grant, A. M. & Bihain, B. E. (1991). Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. Journal of Clinical Investigation 88, 20592066.CrossRefGoogle ScholarPubMed
Mann, J. I., Truswell, A. S. & Pimstone, B. L. (1971). The different effects of oral sucrose and glucose on alimentary lipaemia. Clinical Science 41, 123129.CrossRefGoogle ScholarPubMed
Mansbach, C. M. & Parthasarathy, S. (1982). A re-examination of the fat of glyceride-glycerol in neutral lipid absorption and transport. Journal of Lipid Research 23, 10091019.CrossRefGoogle Scholar
Miesenböck, G., Hölzl, B., Föger, B., Brandstätter, E., Paulweber, B., Sandhofer, F. & Patsch, J. R. (1993). Heterozygous lipoprotein lipase deficiency due to a missense mutation as the cause of impaired triglyceride tolerance with multiple lipoprotein abnormalities. Journal of Clinical Investigation 91, 448455.Google Scholar
Miesenböck, G. & Patsch, J. R. (1991). Coronary artery disease: synergy of triglyceride-rich lipoproteins and HDL. Cardiovascular Risk Factors 1, 293299.Google Scholar
Murphy, M. C., Zampelas, A., Puddicombe, S. M., Furlonger, N. P., Morgan, L. M. & Williams, C. M. (1993). Pre-translational regulation of the expression of the lipoprotein lipase gene by dietary fatty acids in the rat. British Journal of Nutrition (In the Press).Google Scholar
Nestel, P. J. (1964). Relationship between plasma triglycerides and removal of chylomicrons. Journal of Clinical Investigation 43, 943949.CrossRefGoogle ScholarPubMed
Nestel, P. J., Connor, W. E., Reardon, M. F., Connor, S., Wong, S. & Boston, R. (1984). Suppression by diets rich in fish oil of very low density lipoprotein production in man. Journal of Clinical Investigation 74, 8289.CrossRefGoogle Scholar
Nishina, P. M., Johnson, J. P., Naggert, J. K. & Krauss, R. M. (1992). Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19. Proceedings of the National Academy of Sciences of the USA 89, 708712.Google Scholar
Nordestgaard, B. G. & Tybjaerg-Hansen, A. (1992). IDL, VLDL, chylomicrons and atherosclerosis. European Journal of Epidemiology 8 (Suppl. 1), 9298.CrossRefGoogle ScholarPubMed
Ockner, R. K. & Manning, J. A. (1974). Fatty acid-binding protein in small intestine. 4. Identification, isolation, and evidence for its role in cellular fatty acid transport. Journal of Clinical Investigation 54, 326338.Google Scholar
O'Doherty, P. J. A. & Kuksis, A. (1974). Microsomal synthesis of di- and triacylglycerols in rat liver and Ehrlich ascites cells. Canadian Journal of Biochemistry 52, 514524.Google Scholar
Olefsky, J. M., Crapo, P. & Reaven, G. M. (1976). Postprandial plasma triglyceride and cholesterol responses to a low-fat meal. American Journal of Clinical Nutrition 29, 535539.Google Scholar
O'Meara, N. M., Lewis, G. F., Cabana, V. G. & Iverius, P. H. (1992). Role of basal triglyceride and high density lipoprotein in determination of postprandial lipid and lipoprotein responses. Journal of Clinical Endocrinology and Metabolism 75, 465471.Google ScholarPubMed
Ooi, T. C., Simo, I. E. & Yakichuk, J. A. (1992). Delayed clearance of postprandial chylomicrons and their remnants in the hypoalphalipoproteinemia and the mild hypertriglyceridemia syndrome. Arteriosclerosis and Thrombosis 12, 11841190.Google Scholar
Parks, J. S., Johnson, F. L., Wilson, M. D. & Rudel, L. L. (1990). Effect of fish oil diet on hepatic lipid metabolism in nonhuman primates: lowering of secretion of hepatic triglyceride but not apoB. Journal of Lipid Research 31, 455466.Google Scholar
Patsch, J. R., Karlin, J. B., Scott, L. W., Smith, L. C. & Gotto, A. M. (1983). Inverse relationship between blood levels of high density lipoprotein subfraction 2 and magnitude of postprandial lipemia. Proceedings of the National Academy of Sciences of the USA 80, 14491453.Google Scholar
Patsch, J. R., Miesenböck, G., Hopferwieser, T., Muhlberger, V., Knapp, E., Dunn, J. K., Gotto, A. M. & Patsch, W. (1992). Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arteriosclerosis and Thrombosis 12, 13361345.CrossRefGoogle ScholarPubMed
Patsch, J. R., Prasad, S., Gotto, A. M. & Bengtsson-Olivecrona, G. (1984). Postprandial lipemia. A key for the conversion of high density lipoprotein2 into high density lipoprotein3 by hepatic lipase. Journal of Clinical Investigation 74, 20172023.Google Scholar
Patsch, J. R., Prasad, S., Gotto, A. M. & Patsch, W. (1987). High density lipoprotein2. Relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipemia, and to the activities of lipoprotein lipase and hepatic lipase. Journal of Clinical Investigation 80, 341347.Google Scholar
Peel, A. S., Zampelas, A., Williams, C. M., Howland, R. J., Gould, B. J., Chakraborty, J. C. & Ah-Sing, E. (1993). Specific measurement of apolipoprotein B-48 with a novel specific antibody: discrepancies with retinyl palmitate analysis. International Symposium on ‘The Lipid Triad (Triglyceride, HDL, LDL) and Cardiovascular Diseases’, Milan.Google Scholar
Pfeffer, P. E., Sampugna, J., Schwartz, D. P. & Shoolery, J. N. (1977). Analytical 13C NMR: detection, quantitation, and positional analysis of butyrate in butter oil. Lipids 12, 869871.CrossRefGoogle Scholar
Redard, C. L., Davis, P. A. & Schneeman, B. O. (1990). Dietary fiber and gender: effect on postprandial lipemia. American Journal of Clinical Nutrition 52, 837845.Google Scholar
Reichl, D. & Miller, N. E. (1986). The anatomy and physiology of reverse cholesterol transport. Clinical Science 70, 221231.Google Scholar
Ryu, J. E., Howard, G., Craven, T. E., Bond, M. G., Hagaman, A. P. & Crouse, J. R. (1992). Postprandial triglyceridemia and carotid atherosclerosis in middle-aged subjects. Stroke 23, 823828.Google Scholar
Sherill, B. C., Innerarity, T. L. & Mahley, R. W. (1980). Rapid hepatic clearance of the canine lipoproteins containing only the E apoprotein by a high affinity receptor. Identity with the chylomicron remnant transport process. Journal of Biological Chemistry 255, 18041807.Google Scholar
Shiau, Y. F., Boyle, J. T., Umstetter, C. & Koldovsky, O. (1980). Apical distribution of fatty acid esterification capacity along the villus-crypt unit of rat jejunum. Gastroenterology 79, 4753.Google Scholar
Simpson, H. S., Williamson, C. M., Olivecrona, T., Pringle, S., Maclean, J., Lorimer, A. R., Bonnefons, F., Bogaievsky, Y., Packard, C. J. & Shepherd, J. (1990). Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 85, 193202.CrossRefGoogle ScholarPubMed
Spooner, P. M., Chernick, S. S., Garrison, M. M. & Scow, R. O. (1979). Development of lipoprotein lipase activity and accumulation of triacylglycerol in differentiating 3T3-L1 adipocytes. Effects of prostaglandin F2x, 1-methyl-3-isobutylxanthine, prolactin, and insulin. Journal of Biological Chemistry 254, 13051311.Google Scholar
Tornvall, P., Karpe, F., Carlson, L. A. & Hamsten, A. (1991). Relationships of low density lipoprotein subfractions to angiographically defined coronary artery disease in young survivors of myocardial infarction. Atherosclerosis 90, 6780.Google Scholar
van Berkel, T. J. C., Kruijt, J. K., Scheek, L. M. & Groot, P. H. E. (1983). Effect of apolipoproteins E and C-III on the interaction of chylomicrons with parenchymal and non-parenchymal cells from rat liver. Biochemical Journal 216, 7180.CrossRefGoogle ScholarPubMed
van Lenten, B. J., Fogelman, A. M., Jackson, R. L., Shapiro, S., Haberland, M. E. & Edwards, P. A. (1985). Receptor-mediated uptake of remnant lipoproteins by cholesterol-loaded human monocyte-macrophages. Journal of Biological Chemistry 260, 87838788.CrossRefGoogle ScholarPubMed
Weintraub, M. S., Eisenberg, S. & Breslow, J. L. (1987 a). Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E. Journal of Clinical Investigation 80, 15711577.CrossRefGoogle ScholarPubMed
Weintraub, M. S., Eisenberg, S. & Breslow, J. L. (1987 b). Different patterns of postprandial lipoprotein metabolism in normal, type IIa, type III and type IV hyperlipoproteinemic individuals. Effect of treatment with cholestyramine and gemfibrozil. Journal of Clinical Investigation 79, 11101119.CrossRefGoogle ScholarPubMed
Weintraub, M. S., Rosen, Y., Otto, R., Eisenberg, S. & Breslow, J. L. (1988 a). Physical exercise conditioning in the absence of weight loss reduces fasting and post-prandial triglyceride-rich lipoprotein levels. Circulation 79, 10071014.CrossRefGoogle Scholar
Weintraub, M. S., Zechner, R., Brown, A., Eisenberg, S. & Breslow, J. L. (1988 b). Dietary polyunsaturated fats of the ω-6 and ω-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. Journal of Clinical Investigation 82, 18841893.Google Scholar
Welle, S. (1984). Metabolic responses to a meal during rest and low-intensity exercise. American Journal of Clinical Nutrition 40, 990994.Google Scholar
Williams, C. M., Moore, F., Morgan, L. M. & Wright, J. (1992). Effects of n-3 fatty acids on postprandial triglyceride and hormone concentrations in normal subjects. British Journal of Nutrition 69, 6378.Google Scholar
Zampelas, A., Ah-Sing, E., Chakraboraty, J., Murphy, M., Peel, A., Wright, J. & Williams, C. M. (1993 a). The use of retinyl palmitate to measure clearance of chylomicrons and chylomicron remnants following meals of different fatty acid compositions. Biochemical Society Transactions 21, 137S.Google Scholar
Zampelas, A., Williams, C. M., Morgan, L. M., Wright, J. & Quinlan, P. T. (1993 b). The effect of triacylglycerol fatty acid positional distribution on postprandial plasma metabolite and hormone responses in normal adult men. British Journal of Nutrition (In the Press).Google Scholar
Zilversmit, D. B. (1979). Atherogenesis: a postprandial phenomenon. Circulation 60, 473485.CrossRefGoogle ScholarPubMed
Zilversmit, D. B. & Hughes, L. B. (1973). Incorporation in vivo of labeled plasma cholesterol into aortas of young and old rabbits. Atherosclerosis 18, 141152.Google Scholar