Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T09:50:18.141Z Has data issue: false hasContentIssue false

Solar feature tracking in both spatial and temporal domains

Published online by Cambridge University Press:  01 September 2007

D. B. Jess
Affiliation:
Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast, BT7 1NN, Northern Ireland, UK email: djess01@qub.ac.uk NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771, USA
M. Mathioudakis
Affiliation:
Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast, BT7 1NN, Northern Ireland, UK email: djess01@qub.ac.uk
R. Erdélyi
Affiliation:
SP2RC, Department of Applied Mathematics, The University of Sheffield, Sheffield, S3 7RH, England, U.K.
G. Verth
Affiliation:
SP2RC, Department of Applied Mathematics, The University of Sheffield, Sheffield, S3 7RH, England, U.K.
R. T. J. McAteer
Affiliation:
NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771, USA
F. P. Keenan
Affiliation:
Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast, BT7 1NN, Northern Ireland, UK email: djess01@qub.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new method for automated coronal loop tracking, in both spatial and temporal domains, is presented. The reliability of this technique was tested with TRACE 171 Å observations. The application of this technique to a flare-induced kink-mode oscillation, revealed a 3500 km spatial periodicity which occur along the loop edge. We establish a reduction in oscillatory power, for these spatial periodicities, of 45% over a 322 s interval. We relate the reduction in oscillatory power to the physical damping of these loop-top oscillations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D., 1999, ApJ, 520, 880CrossRefGoogle Scholar
Aschwanden, M. J., Nightingale, R. W., Andries, J., Goossens, M., & Van Doorsselaere, T., 2003, ApJ, 598, 1375CrossRefGoogle Scholar
Athay, R. G., & White, O. R., 1978, ApJ, 226, 1135CrossRefGoogle Scholar
Banerjee, D., Erdélyi, R., Oliver, R. & O'Shea, E., 2007, Sol. Phys, 246, 3Google Scholar
Banerjee, D., O'Shea, E., Doyle, J. G., & Goossens, M., 2001, A&A, 371, 1137Google Scholar
Dymova, M. V., & Ruderman, M. S., 2007, A&A, 463, 759Google Scholar
Erdélyi, R. & Verth, G., 2007, A&A, 642, 743Google Scholar
Gonzalez, R., & Woods, R., 1992, Digital Image Processing, Addison Wesley, 414Google Scholar
Jess, D. B., Andić, A., Mathioudakis, M., Bloomfield, D. S., & Keenan, F. P., 2007, A&A, 473, 943Google Scholar
McAteer, R. T. J., Gallagher, P. T., Bloomfield, D.S., Williams, D. R., Mathioudakis, M., & Keenan, F.P., 2004, ApJ, 602, 436CrossRefGoogle Scholar
McAteer, R. T. J., Young, C. A., Ireland, J., & Gallagher, P. T., 2007, ApJ, 662, 691CrossRefGoogle Scholar
McEwan, M. P., & De Moortel, I., 2006, A&A, 448, 763Google Scholar
Marsh, M. S., & Walsh, R. W., 2006, ApJ, 643, 540CrossRefGoogle Scholar
Muzy, J. F., Bacry, E., & Arneodo, A., 1993, Phys. Rev. A, E-47, 875Google Scholar
Nakariakov, V. M., & Verwichte, E., 2005, LRSP, 3Google Scholar
Ruderman, M. S., 2005, Proc. Dynamic Sun : Challenges for Theory and Observations, ESA-SP 600, 96Google Scholar
Schrijver, C. J., Aschwanden, M. J., & Title, A. M., 2002, Solar Phys., 206, 69Google Scholar
Sheeley, N. R., Wang, Y. M., Hawley, S. H., Brueckner, G. E., Dere, K. P., et al. , 1997, ApJ, 484, 472CrossRefGoogle Scholar
Terradas, J., Oliver, R., & Ballester, J. L., 2006, ApJ, 650, 91CrossRefGoogle Scholar
Verth, G., van Doorsselaere, T., Erdélyi, R. & Goossens, M., 2007, A&A, 475, 341Google Scholar
Wang, T. J., & Solanki, S. K., 2004, A&A, 421, 33Google Scholar