Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T20:42:06.930Z Has data issue: false hasContentIssue false

Effect of vitamin A deficiency on protein catabolism in chicks

Published online by Cambridge University Press:  07 January 2011

I. Bruckental
Affiliation:
Department of Animal Nutrition and Agricultural Biochemistry, Faculty of Agriculture, Hebrew University, Rehovot, Israel
I. Ascarelli
Affiliation:
Department of Animal Nutrition and Agricultural Biochemistry, Faculty of Agriculture, Hebrew University, Rehovot, Israel
A. Bondi
Affiliation:
Department of Animal Nutrition and Agricultural Biochemistry, Faculty of Agriculture, Hebrew University, Rehovot, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The changes in the concentration of some enzymes and their metabolites were studied in the first stages of vitamin A deficiency in chicks.

2. Kidney arginase (EC 3.5.3.1) and liver xanthine dehydrogenase activities had increased even before complete disappearance of vitamin A from the plasma. Similarly, an increase was found in plasma uric acid, and plasma urea also increased but to a lesser extent. Liver proteolytic activity also was slightly increased by vitamin A deficiency.

3. Kidney D-amino acid oxidase (EC 1.4.3.3) activity and plasma concentrations of total protein and free amino acids were not affected, at least in the first stages of the deficiency.

4. Oral dosing of deficient chicks with retinyl palmitate to provide 300 μg retinol, 24 h before killing, brought about a decrease in the activities of both enzymes and of plasma uric acid, and an increase in plasma urea.

5. Dietary levels of vitamin A were reflected not only in the liver concentrations of the vitamin but also in the plasma concentrations.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Ames, S. R., Risley, H. A. & Harris, P. L. (1954). Analyt. Chem. 26, 1378.CrossRefGoogle Scholar
Amine, E. K., Corey, J., Hegsted, D. M. & Hayes, K. C. (1970). J. Nutr. 100, 1033.CrossRefGoogle Scholar
Ascarelli, I. (1969). Am. J. clin. Nutr. 22, 913.Google Scholar
Ascarelli, I. & Bruckental, I. (1968). Israel J. Chem. 6, 139P.Google Scholar
Bieri, J. G., McDaniel, E. G. & Rogers, W. E. Jr (1969). Science, N. Y. 163, 574.CrossRefGoogle Scholar
Burton, K. (1955). Meth. Enzym. 2, 199.CrossRefGoogle Scholar
Chiba, N., Brady, M. & Johnson, B. C. (1971). Fedn Proc. Fedn Am. Socs exp. Biol. 30, 583.Google Scholar
Clark, J. H. & Pesch, L. A. (1956). J. Pharmac. exp. Ther. 117, 202.Google Scholar
Coulombe, J. J. & Favreau, L. (1963). Clin. Chem. 9, 102.CrossRefGoogle Scholar
Della Corte, E. & Stirpe, F. (1967). Biochem. J. 102, 520.CrossRefGoogle Scholar
DeLuca, L., Schumacher, M. & Wolf, G. (1970). J. biol. Chem. 245, 4551.CrossRefGoogle Scholar
Dingle, J. T., Sharman, I. M. & Moore, T. (1966). Biochem. J. 98, 476.CrossRefGoogle Scholar
Dowling, J. E. & Wald, G. (1959). Ann. N.Y. Acad. Sci. 74, 256.CrossRefGoogle Scholar
Dror, Y. & Gertler, A. (1967). J. Nutr. 93, 401.CrossRefGoogle Scholar
Ellenberger, H. A., Guerrant, N. B. & Chilcote, M. E. (1949). J. Nutr. 37, 185.CrossRefGoogle Scholar
Elvehjem, C. A. & Neu, V. F. (1932). J. biol. Chem. 97, 71.CrossRefGoogle Scholar
Esh, G. C. & Bhattacharya, R. K. (1961). Ann. Biochem. exp. Med. 21, 157.Google Scholar
Federer, W. T. (1855). Experimental Design. New York: Macmillan.Google Scholar
Fraenkel-Conrat, H., Simpson, M. E. & Evans, H. M. (1942-3). Am.J. Physiol. 138, 439.CrossRefGoogle Scholar
Gornall, A. G., Bardawill, C. S. & David, W. M. (1949). J. biol. Chem. 177, 751.CrossRefGoogle Scholar
Grangaud, R., Nicol, M. & Desplanques, D. (1969). Am. J. clin. Nutr. 22, 991.CrossRefGoogle Scholar
Lowe, J. S., Morton, R. A., Cunningham, N. F. & Vernon, J. (1957). Biochem. J. 67, 215.CrossRefGoogle Scholar
McLean, P. (1961). Nature, Lond. 191, 1302.CrossRefGoogle Scholar
Malathi, P., Seshadri Sastry, P. & Ganguly, J. (1961). Nature, Lond. 189, 660.CrossRefGoogle Scholar
Moore, T. (1957). Vitamin A p. 210. Amsterdam: Elsevier Publishing Co.Google Scholar
Moore, T. (1970). In International Encyclopedia of Food and Nutrition Vol. 9, Fat Soluble Vitamins p. 223 [Morton, R. A., editor]. London: Pergamon Press.Google Scholar
Nir, I. & Ascarelli, I. (1966). Br.J. Nutr. 20, 41.CrossRefGoogle Scholar
Nir, I. & Ascarelli, I. (1967). Br.J. Nutr. 21, 167.CrossRefGoogle Scholar
Nir, I., Bruckental, I. & Ascarelli, I. (1967). Br.J. Nutr. 21, 557.CrossRefGoogle Scholar
Nitsan, Z. & Alumot, E. (1960). Bull. Res. Coun. Israel 9A, 23.Google Scholar
Olsen, E. M., Harvey, J. D., Hill, D. C. & Branion, H. D. (1959). Poult. Sci. 38, 929.CrossRefGoogle Scholar
Pitt, G. A. J. (1966). Int. Z. VitamForsclt. 36, 249.Google Scholar
Praetorius, E. & Poulsen, H. (1953). Scand. J. clin. Lab. Invest. 5, 273.CrossRefGoogle Scholar
Remy, C., Richert, D. A. & Westerfeld, W. W. (1951). J. biol. Chem. 193, 649.CrossRefGoogle Scholar
Rogers, W. E. Jr (1969). Am. J. clin. Nutr. 22, 1003.CrossRefGoogle Scholar
Scholz, R. W. & Featherston, W. R. (1968). J. Nutr. 95, 271.CrossRefGoogle Scholar
Stoewsand, G. S. & Scott, M. L. (1961 a). Poult. Sci. 40, 1255.CrossRefGoogle Scholar
Stoewsand, G. S. & Scott, M. L. (1961 b). Proc. SOC. exp. Biol. Med. 106, 635.CrossRefGoogle Scholar
Udenfriend, S. (1962). Fluorescence Assays in Biology and Medicine, p. 318. New York: Academic Press.Google Scholar
Varandani, P. T., Wolf, G. & Johnson, B. C. (1960). Biochem. biophys. Res. Commun. 3, 97.CrossRefGoogle Scholar
Webb, K. E. Jr, Mitchell, G. E. & Little, C. O. (1971). J. Anim. Sci. 32, 157.CrossRefGoogle Scholar