Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T19:16:44.026Z Has data issue: false hasContentIssue false

Short Note: Life history of the Antarctic sea star Labidiaster annulatus (Asteroidea: Labidiasteridae) revealed by DNA barcoding

Published online by Cambridge University Press:  16 September 2008

Alexis M. Janosik
Affiliation:
Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
Andrew R. Mahon
Affiliation:
Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
Rudolf S. Scheltema
Affiliation:
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Kenneth M. Halanych*
Affiliation:
Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
*
*corresponding author:ken@auburn.edu

Extract

Labidiaster annulatus, Sladen (1889) is a multi-rayed (9–50) voracious Antarctic sea star with numerous large, conspicuous crossed pedicellariae. An active and opportunistic predator, it commonly preys upon euphausiids, amphipods, and small fish in the water column (Dearborn et al. 1991). Labidiaster annulatus is distributed around the Antarctic, Kerguelen, South Orkney, South Sandwich Islands, South Georgia, and Shag Rocks, at recorded depths of 30–440 m (Fisher 1940, unpublished data).

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403410.CrossRefGoogle ScholarPubMed
Clement, M., Posada, D. & Crandall, K.A. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 16571659.CrossRefGoogle ScholarPubMed
Dearborn, J.H., Edwards, K.C. & Fratt, D.B. 1991. Diet, feeding behavior, and surface morphology of the multi-armed Antarctic sea star Labidiaster annulatus (Echinodermata: Asteroidea). Marine Ecology Progress Series, 77, 6584.CrossRefGoogle Scholar
Fisher, W.K. 1940. Asteroidea. Discovery Reports, 20, 69306.Google Scholar
Foltz, D.W. 1997. Hybridization frequency is negatively correlated with divergence time of mitochondrial DNA haplotypes in a sea star (Leptasterias spp.) species complex. Evolution, 51, 283288.CrossRefGoogle Scholar
Foltz, D.W., Bolton, M.T., Kelley, S.P., Kelley, B.D. & Nguyen, A.T. 2007. Combined mitochondrial and nuclear sequences support the monophyly of forcipulatacean sea stars. Molecular Phylogenetics and Evolution, 43, 627634.CrossRefGoogle ScholarPubMed
Hart, M.W., Byrne, M. & Smith, M.J. 1997. Molecular phylogenetic analysis of life-history evolution in Asterinid starfish. Evolution, 51, 18481861.Google ScholarPubMed
Hunter, R.L. & Halanych, K.M. 2008. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage. Journal of Heredity, 99, 137148.CrossRefGoogle ScholarPubMed
Mah, C.L. 2000. Preliminary phylogeny of the forcipulatacean Asteroidea. American Zoologist, 40, 375381.Google Scholar
Mahon, A.R., Arango, C.P. & Halanych, K.M. 2008. Genetic diversity of Nymphon (Arthropoda: Pycnogonida: Nymphonidae) along the Antarctic Peninsula with a focus on Nymphon australe. Marine Biology, 155, 315323.CrossRefGoogle Scholar
Palumbi, S.R., Martin, A.P., Romano, S., McMillan, W.O., Stice, L. & Grabowski, G. 1991. The simple fool's guide to PCR. Special Publication of the Department of Zoology. Honolulu, HI: University of Hawaii, 47 pp.Google Scholar
Pearse, J.S., McClintock, J.B. & Bosch, I. 1991. Reproduction of Antarctic benthic marine invertebrates: tempos, modes and timing. American Zoologist, 31, 6580.CrossRefGoogle Scholar
Raupach, M.J. & Wagele, J.W. 2006. Distinguishing crypic species in Antarctic Asellota (Crustacea: Isopoda) - a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarctic Science, 18, 191198.CrossRefGoogle Scholar
Strathmann, M.F. & Strathmann, R.R. 2007. An extraordinarily long larval duration of 4.5 years from hatching to metamorphosis for teleplanic veligers of Fusitriton oregonensis. Biological Bulletin, 213, 152159.CrossRefGoogle ScholarPubMed
Swofford, D.L. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0. Sunderland, MA: Sinauer Associates.Google Scholar
Waters, J.M., O'Loughlin, P.M. & Roy, M.S. 2004. Cladogenesis in a starfish species complex from southern Australia: evidence for vicariant speciation? Molecular Phylogenetics and Evolution, 32, 236245.CrossRefGoogle Scholar
Waters, J.M. & Roy, M.S. 2003. Marine biogeography of southern Australia: phylogeographical structure in a temperate sea-star. Journal of Biogeography, 30, 17871796.CrossRefGoogle Scholar
Wilson, N.G., Hunter, R.L., Lockhart, S.J. & Halanych, K.M. 2007. Multiple lineages and absence of panmixia in the Antarctic ‘circumpolar’ crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Marine Biology, 152, 895904.CrossRefGoogle Scholar
Webb, K.E., Barnes, K.A., Clark, M.S. & Bowden, D.A. 2006. DNA barcoding: a molecular tool to identify Antarctic marine larvae. Deep-Sea Research II, 53, 10531060.CrossRefGoogle Scholar