Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-17T14:32:01.969Z Has data issue: false hasContentIssue false

Rape-seed meal toxicity in gnotobiotic rats: influence of a whole human faecal flora or single human strains of Escherichia coli and Bacteroides vulgatus

Published online by Cambridge University Press:  09 March 2007

Sylvie Rabot
Affiliation:
Unité d'Ecologie et de Physiologie du Systeme Digestif Centre de Recherches de Jouy, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cédex, France
Lionelle Nugon-Baudon
Affiliation:
Unité d'Ecologie et de Physiologie du Systeme Digestif Centre de Recherches de Jouy, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cédex, France
Pierre Raibaud
Affiliation:
Unité d'Ecologie et de Physiologie du Systeme Digestif Centre de Recherches de Jouy, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cédex, France
Odette Szylit
Affiliation:
Unité d'Ecologie et de Physiologie du Systeme Digestif Centre de Recherches de Jouy, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cédex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gnotobiotic growing rats harbouring either a whole human faecal flora or single human strains of Escherichia coli (EM0) or Bacteroides vulgatus (BV8H1) were fed for 7 weeks on semi-synthetic diets in which the protein source was either soya-bean meal (SM) or rape-seed meal (RM). For each bacterial status the RM-diet group was compared with the control group fed on the SM diet. The association of human faecal flora with the RM diet was responsible for reduced feed intake and reduced weight gain, an enlargement of the liver and thyroid and a decrease in both thyroxine and triiodothyronine plasma levels. The association of the B. vulgatus BV8H1 strain with the RM diet reproduced all these effects, except that triiodothyronine plasma levels were not significantly modified. Rats inoculated with the E. coli EM0 strain and fed on the RM diet exhibited a goitre and lowered thyroxine and triiodothyronine plasma levels. These results show that the human intestinal microflora may be involved in glucosinolate metabolism when cruciferous vegetables are consumed by man. The specificity of the symptoms observed according to the rat bacterial status supports the hypothesis that bacteria yield specific toxic glucosinolate derivatives according to their enzymic potential.

Type
Nutritional Effects of Biologically Active Components of Plants
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Aranki, A., Syed, S. A., Kenney, E. B. & Freter, R. (1969). Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. pplied Microbiology 17, 568576.Google Scholar
Bell, J. M. (1984). Nutrients and toxicants in rapeseed meal: a review. Journal qf Animal Science 58, 9961010.CrossRefGoogle ScholarPubMed
Benns, G. B., Hall, J. W. & Beare-Rogers, J. L. (1978). Intake of brassicaceous vegetables in Canada. Canadian Journal of Public Health 69, 6466.Google ScholarPubMed
Bourdon, D., Perez, J. M. & Baudet, J. J. (1981). Utilisation de nouveanx types de tourteaux de colza par le porc en croissance-finition: influence des glucosinolates et du dépelliculage (New types of rapeseed meal fed to growing-finishing pigs: influence of glucosinolates and dehulling). Journées de la Recherche Porcine en France 13, 163178.Google Scholar
Butler, E. J., Pearson, A. W. & Fenwick, G. R. (1982). Problems which limit the use of rapeseed meal as a protein source in poultry diets. Journal ofthe Science of Food and Agriculture 33, 866875.Google Scholar
Centre Technique Interprofessionnel des Oléagineux Métropolitains (1987). Analyse des gruines oléagineuses (Analysis of oilseeds). Guide pratique AFNOR. Paris: CETIOM.Google Scholar
Clements, F. W. (1955). A thyroid blocking agent as a cause of endemic goitre in Tasmania: preliminary communication. Medical Journal of Auslralia 3, 369371.Google Scholar
Debure, A., Colombel, J. F., Flourie, B., Rautureau, M. & Rambaud, J. C. (1989). Comparaison de I'implantation et de l'activité métabolique d'une flore fécale de rat et d'une flore fecale humaine inoculées chez le rat axénique (Implantation and metabolic activity of rat and human fecal bacterial flora administered to germ-free rats). Gastroentérologie Clinique et Biologique 13, 2531.Google Scholar
Duval-lflah, Y., Raibaud, P. & Rousseau, M. (1981). Antagonisms among isogenic strains of Escherichia coli in the digestive tracts of gnotobiotic mice. Infection and Immunity 34, 957969.CrossRefGoogle Scholar
Fenwick, G. R., Heaney, R. K. & Mullin, W. J. (1983). Glucosinolates and their breakdown products in food and food plants. Critical Reviews in Food Science arid Nutrilion 18, 123201.CrossRefGoogle ScholarPubMed
Finegold, S. M., Sutter, V. L. & Mathisen, G. E. (1983). Normal indigenous intestinal flora. In Human Intestinal Microflora in Health and Disease, pp. 331 [Hentges, D. J., editor]. New York: Academic Press.CrossRefGoogle Scholar
Greer, M. A. (1962). The natural occurrence of goitrogenic agents. Recent Progress in Hormone Research 18, 187219.Google Scholar
Greer, M. A. & Astwood, E. B. (1948). The antithyroid effect of certain foods in man as determined with radioactive iodine. Endocrinology 43, 105119.CrossRefGoogle Scholar
Greer, M. A. & Deeney, J. M. (1959). Antithyroid activity elicited by the ingestion of pure progoitrin, a naturally occurring thioglycoside of the turnip family. Journal of Clinical Investigation 38, 14651474.CrossRefGoogle ScholarPubMed
Jordan, D., Rousset, B., Perrin, F., Fournier, M. & Orgiazzi, J. (1980). Evidence for circadian variations in serum thyrotropin, 3,5,3'-triiodothyronine, and thyroxine in the rat. Endocrinology 107, 12451248.CrossRefGoogle ScholarPubMed
Langer, P., Michajlovskij, N., Sedlak, J. & Kutka, M. (1971). Studies on the antithyroid activity of naturally occurring L-5-vinyl-2-thiooxazolidone in man. Endokrinologie 57, 225229.Google ScholarPubMed
McDanell, R., McLean, A. E. M., Hanley, A. B., Heaney, R. K. & Fenwick, G. R. (1989). The effect of feeding brassica vegetables and intact glucosinolates on mixed-function oxidase activity in the livers and intestines of rats. Food and Chemical Toxicology 27, 289293.CrossRefGoogle ScholarPubMed
McMillan, M., Spinks, E. A. & Fenwick, G. R. (1986). Preliminary observations on the effect of dietary Brussels sprouts on thyroid function. Human Toxicology 5, 1519.CrossRefGoogle ScholarPubMed
Mallett, A. K., Bearne, C. A., Rowland, I. R., Farthing, M. J. G., Cole, C. B. & Fuller, R. (1987). The use of rats associated with a human faecal flora as a model for studying the effects of diet in the human gut microflora. Journal of Applied Bacteriology 63, 3945.CrossRefGoogle Scholar
Michajlovskij, N., Sedlak, J., Jusic, M. & Buzina, R. (1969). Goitrogenic substances of kale and their possible relations to the endemic goitre on the island of Krk (Yugoslavia). Endocrinologia Experimentalis 3, 6572.Google Scholar
Mitjavila, S. (1986). Substances naturelles nocives des aliments (Natural toxic compounds in food). Toxicologie et Séurité des Aliments, pp. 129157. Paris: Lavoisier et Apria.Google Scholar
Mullin, W. J. & Sahasrabudhe, M. R. (1978). An estimate of the average daily intake of glucosinolates via cruciferous vegetables. Nutrition Reports International 18, 273279.Google Scholar
Nugon-Baudon, L., Rabot, S., Szylit, O. & Raibaud, P. (1990 a). Glucosinolate toxicity in growing rats: interactions with the hepatic detoxification system. Xenobiotica 20, 223230.CrossRefGoogle ScholarPubMed
Nugon-Baudon, L., Rabot, S., Wal, J. M. & Szylit, O. (1990 b). Interactions of the intestinal microflora with glucosinolates in rapeseed meal toxicity: first evidence of an intestinal Lactobacillus possessing a myrosinase- like activity in vivo. Journal of the Science of Food and Agriculture 52, 547559.CrossRefGoogle Scholar
Nugon-Baudon, L., Szylit, O. & Raibaud, P. (1988). Production of toxic glucosinolate derivatives from rapeseed meal by intestinal microflora of rat and chicken. Journal of the Science of Food und Agriculture 43, 299308.CrossRefGoogle Scholar
Oginsky, E. L., Stein, A. E. & Greer, M. A. (1965). Myrosinase activity in bacteria as demonstrated by the conversion of progoitrin to goitrin. Proceedings of the Society for Experimental Biology and Medicine 119, 360364.CrossRefGoogle ScholarPubMed
Sones, K., Heaney, R. K. & Fenwick, G. R. (1984). An estimate of the mean daily intake of glucosinolates from cruciferous vegetables in the UK. Journal of the Science of Food and Agriculture 35, 712720.CrossRefGoogle Scholar
Stoewsand, G. S., Anderson, J. L. & Munson, L. (1988). Protective effect of dietary Brussels sprouts against mammary carcinogenesis in Sprdgue-Dawley rats. Cancer Letters 39, 199207.CrossRefGoogle ScholarPubMed
Ukai, M. & Mitsuma, T. (1977). Plasma triiodothyronine, thyroxine and thyrotrophin levels in germfree rats. Experientia 34, 10951096.CrossRefGoogle Scholar
Vermorel, M., Davicco, M. J. & Evrard, J. (1987). Valorization of rapeseed meal. 3. Effects of glucosinolate content on food intake, weight gain, liver weight and plasma thyroid hormone levels in growing rats. Reproduction Nutrition Dkveloppement 27, 5766.Google Scholar
Vermorel, M., Heaney, R. K. & Fenwick, G. R. (1986). Nutritive value of rapeseed meal: effects of individual glucosinolates. Journal of the Science of Food and Agriculture 37, 11971202.CrossRefGoogle Scholar
Vermorel, M., Heaney, R. K. & Fenwick, G. R. (1988). Antinutritional effects of the rapeseed meals, Darmor and Jet Neuf, and progoitrin together with myrosinase, in the growing rat. Journal of the Science of Food and Agriculture 44, 321334.Google Scholar