Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T16:54:38.277Z Has data issue: false hasContentIssue false

Involvement of the solid phase of rumen digesta in the interaction between copper, molybdenum and sulphur in sheep

Published online by Cambridge University Press:  09 March 2007

J. D. Allen
Affiliation:
School of Veterinary Studies, Murdoch University, Murdoch, Western Australia 6150, Australia
J. M. Gawthornet
Affiliation:
School of Veterinary Studies, Murdoch University, Murdoch, Western Australia 6150, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Merino sheep fed on a diet of chopped wheaten hay, chopped lucerne (Medicago saliva) hay and oat grain were the source of rumen contents for the study. The diet contained (mg/kg dry weight) 3.3 copper, 0.24 molybdenum and 2.8 sulphur. The effects of adding between 5 and 25 mg Mo/kg as ammonium molybdate (AM) or tetrathiomolybdate (TTM) on the distribution and forms of Cu and Mo in rumen contents were investigated in vivo and in vitro.

2. Approximately 88 % of the Cu and 94% of the Mo in rumen contents were associated with the solid phase. When AM or TTM was added to rumen contents in vivo or in vitro the proportion of these elements in the solid phase was increased at the expense of the fluid phase.

3. The addition of AM and TTM to rumen contents also decreased the proportion of Cu that was soluble in trichloroacetic acid (50 g/l; TCA) and increased the proportion of Cu that was not extractable by sequential treatment with TCA and neutral detergent.

4. Column chromatography of neutral-detergent extracts of rumen contents revealed that TTM treatment caused Cu to be strongly bound to proteins of high molecular weight.

5. Addition of sulphide to rumen contents did not result in significant changes in the distribution of Cu between the fluid and solid phases, or in the solubility of Cu in TCA.

6. It is postulated that constant removal of TTM from the fluid phase via reaction with proteins and other macromolecules in the solid phase results in greater formation of TTM in vivo than would be expected from solution chemistry. The molybdo-proteins so formed are strong chelators of Cu and may be the agents responsible for the decrease in Cu absorption in animals that consume diets containing high concentrations of Mo.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Allen, J. D. & Gawthorne, J. M. (1985). In Trace Elements in Man and Animals (TEMA-5). pp. 361363 [ Mills, C., Bremner, I. and Chesters, J., editors ], Slough: Commonwealth Agricultural Bureaux.Google Scholar
Aymonino, P. J., Ranade, A. C., Diemann, E. & Muller, A. (1969). Zeitschrift für Anorgonische und Allgemeine Chemie 371, 300305.Google Scholar
Bingley, J. B. (1963). Agricultural and Food Chemistry 11, 130131.CrossRefGoogle Scholar
Bird, P. R. (1970). Proceedings of the Australian Society of Animal Production 8, 212218.Google Scholar
Bray, A. C., Suttle, N. F. & Field, A. C. (1982). Proceedings of the Nutrition Society 41, 67A.CrossRefGoogle Scholar
Bremner, I. (1970). British Journal of Nutrition 24, 769783.CrossRefGoogle Scholar
Bremner, I., Mills, C. F. & Young, B. W. (1982). Journal of Inorganic Biochemistry 16, 109119.CrossRefGoogle Scholar
Bremner, I. & Young, B. W. (1978). British Journal of Nutrition 39, 325336.CrossRefGoogle Scholar
Chesters, J. K., Will, A. M., Price, J. & Mills, C. F. (1982). Proceedings of the Nutrition Society 41, 139A.Google Scholar
Clarke, N. J. & Laurie, S. H. (1980). Journal of Inorganic Biochemistry 12, 3743.CrossRefGoogle Scholar
Dick, A. T. (1956). In Organic Nitrogen Metabolism, pp. 445473 [McElroy, W. and Glass, B., editors ]. Baltimore: Johns Hopkins Press.Google Scholar
Dick, A. T., Dewey, D. W. & Gawthome, J. M. (1975). Journal of Agricultural Science, Cambridge 85, 567568.CrossRefGoogle Scholar
Durand, M. & Kawashima, R. (1979). In Digestive Physiology and Metabolism in Ruminants, pp. 375408 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.Google Scholar
El Gallad, T. T., Mills, C. F., Bremner, I. & Summers, R. (1983). Journal of Inorganic Biochemistry 18, 323334.CrossRefGoogle Scholar
Gawthorne, J. M., Allen, J. D. & Nader, C. J. (1985). In Trace Elements in Man and Animals (TEMA–5). pp. 346351 [Mills, C., Bremner, I. and Chesters, J., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Gawthome, J. M. & Nader, C. J. (1976). British Journal of Nutrition 35, 1123.CrossRefGoogle Scholar
Grace, N. D. & Suttle, N. F. (1979) British Journal of Nutrition 41, 125136.CrossRefGoogle Scholar
Harmer, M. A. & Sykes, A. G. (1980). Inorganic Chemistry 19, 28812885.CrossRefGoogle Scholar
Hewitt, E. J. (1983). In Metals and Micronutrients: Uptake and Utilization by Plants, pp. 277290 [ Robb, D. and Pierpoint, W., editors ]. New York: Academic Press.CrossRefGoogle Scholar
Hynes, M., Lamand, M., Montel, G. & Mason, J. (1984). British Journal of Nutrition 52, 149158.CrossRefGoogle Scholar
Mason, J. (1982). Irish Veterinary Journal 36, 164168.Google Scholar
Mason, J., Kelleher, C. A. & Letters, J. (1982 a). British Journal of Nutrition 48, 391397.CrossRefGoogle Scholar
Mason, J., Lamand, M. & Kelleher, C. A. (1982b). Journal of Comparative Pathology 92, 509518.CrossRefGoogle Scholar
Mills, C. F. & Bremner, I. (1980). In Molybdenum and Molybdenum–Containing Enzymes, pp. 519542 [Coughlan, M. P., editors]. Oxford: Pergamon Press.Google Scholar
Mills, C. F., El Gallad, T. T., Bremner, I. & Wenham, G. (1981). Journal of Inorganic Biochemistry 14, 163175.CrossRefGoogle Scholar
Price, J. & Chesters, J. K. (1985). British Journal of Nutrition 53, 323336.CrossRefGoogle Scholar
Smith, B. S. W. & Wright, H. (1975). Clinica Chemica Acta 62, 5563.CrossRefGoogle Scholar
Smith, R. M. & Marston, H. R. (1970). British Journal of Nutrition 24, 857877.CrossRefGoogle Scholar
Suttle, N. F. & Field, A. C. (1983). Journal of Comparative Pathology 93, 379389.CrossRefGoogle Scholar
Van Soest, P. J. (1966). Journal of the American Organization of Agricultural Chemists 49, 546551.Google Scholar
Van Soest, P. J. & Wine, R. H. (1967). Journal of the American Organization of Agricultural Chemists 50, 5055.Google Scholar
Weber, K. M., Leaver, D. D. & Wedd, A. G. (1979). British Journal of Nutrition 41, 403405.CrossRefGoogle Scholar
Zumft, W. G. (1978). European Journal of Biochemistry 91, 345350.CrossRefGoogle Scholar