Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-17T04:17:29.730Z Has data issue: false hasContentIssue false

Very low field electron emission from Hot Filament CVD grown microcrystalline diamond

Published online by Cambridge University Press:  14 March 2011

B.S. Satyanarayana
Affiliation:
Electronic Materials & Devices, Dept of Engineering, Cambridge University, Cambridge. CB2 1PZ., U.K.
X.L. Peng
Affiliation:
Material Science dept, Cambridge University, Cambridge., U.K.
G. Adamopoulos
Affiliation:
Electronic Materials & Devices, Dept of Engineering, Cambridge University, Cambridge. CB2 1PZ., U.K.
J. Robertson
Affiliation:
Electronic Materials & Devices, Dept of Engineering, Cambridge University, Cambridge. CB2 1PZ., U.K.
W.I. Milne
Affiliation:
Electronic Materials & Devices, Dept of Engineering, Cambridge University, Cambridge. CB2 1PZ., U.K.
T.W. Clyne
Affiliation:
Material Science dept, Cambridge University, Cambridge., U.K.
Get access

Abstract

Very low threshold field emission from undoped microcrystalline diamond films grown by the hot filament chemical vapour deposition process (HFCVD) is reported. The effect of crystal size, methane concentration and the temperature has been studied. The microcrystalline diamond films grown using 3% methane (CH4) / hydrogen (H2) gas mixture ratio under varying deposition temperatures exhibit very low emission threshold fields. The threshold fields varied from 0.4 V/ [.proportional]m to 1 V/[.proportional]m for an emission current density of 1 [.proportional]A/cm2. A correlation between the emission characteristics and the material properties is presented. These films exhibit an emission site density of ∼ 104−105/cm2 at an applied field of 3 V/[.proportional]m.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, C., Garcia, A., Ingram, D.C., and Kordesch, M.E., Electron. Lett. 27, 1459 (1991).Google Scholar
2. Talin, A A, Pan, L S, McCarty, K F, Doerr, H J, Bunshah, R F, Appl Phys Lett 69, 3842 (1996).Google Scholar
3. Okano, K., Koizumi, S., Silva, S.R.P, Amaratunga, G.A.J., Nature, 381,140 (1996).Google Scholar
4. Zhu, W., Kochanski, G P & Jin, S, Science, 282, 1471, (1998).Google Scholar
5. Lacher, F., Wild, C., Behr, D. & Koidl, P., Diamond Relat. Mater. 6, 1111(1997).Google Scholar
6. Park, K.H., Lee, Soonil, Song, K.H., Park, J. Il, Park, K.J., Han, S.Y., Na, S.J., Lee, N.Y., and Koh, K.H., J. Vac. Sci. Technol. B 16, 724 (1998).Google Scholar
7. Gruen, M.Q. D. M., Krauss, A. R., Auciello, O., Corrigan, T. D. and Chang, R. P. H., J Vac Sci Technol B 17, 705 (1999).Google Scholar
8. Tolt, Z.Li, Fink, R.L. & Yaniv, Z., J. Vac. Sci. Technol. B 16, 1197, (1998).Google Scholar
9. Heer, W.A. de, Chatelain, A., and Ugrate, D., Science 270, 1179 (1995).Google Scholar
10. Kuttel, O.M., Groening, O., Emmenegger, C. & Schlapbach, L., App Phys Lett, 73, 2113 (1998).Google Scholar
11. Chen, Y., Patel, S., Ye, Y., Shaw, D.T. & Guo, L., App. Phys. Lett, 73, 2119 (1998).Google Scholar
12. Coll, B.F., Jaskie, J.E., Markham, J.L., Menu, E.P., Talin, A.A., Allmen, P.von, MRS. Sym Proc. Vol 498, 185 (1998).Google Scholar
13. Satyanarayana, B S, Robertson, J, Milne, W I, J. App. Phys. 87, 3126, (2000)Google Scholar
14. Obraztsov, O.N., I.Yu.Pavlovsky and Volkov, A.P., J. Vac. Sci. Technol. B 17, 674, (1999).Google Scholar
15. Ferrari, A.C., Satyanarayana, B.S., Milani, P., Barborini, E., Piseri, P., Robertson, J. and Milne, W.I.. Europhys. Lett, 46, 245 (1999).Google Scholar
16. Sugino, T., Kuriyama, K., Kimura, C. & Kawasaki, S., App. Phys. Lett 73, 268 (1998).Google Scholar
17. Sjostrom, H., Stafstrom, S., Boman, M. & Sundgren, J-E, Phys. Rev. Letts, 75 1336 (1995).Google Scholar
18. Karabutov, A.V., Forlov, V.D., Pimenov, S.M. & Konov, V.I., Diamond Relat. Mater. 8, 763 (1999).Google Scholar
19. Satyanarayana, B S, Hart, A, Milne, W I & Robertson, J, App Phys Lett 71, 1430 (1997). (b) Diamond & Related Materials 7, 656 (1998).Google Scholar
20. Satyanarayana, B.S., Ph.D thesis, University of Cambridge, Cambridge, UK, (1999).Google Scholar
21. Lux, B. & Haubner, R., in Diamond and Diamond like films and Coatings, Ed. Clausing, R.E., Angus, J.C., Horton, L.L., & Koidl, P., Plenum Press USA, p-579, (1990).Google Scholar
22. Hirose, Y., Japan. J. Appl. Phys, 25, L519, (1986).Google Scholar
23. Pate, B.B., Surface Science, 165, 83, (1986).Google Scholar
24. Ilie, A., Yagi, T., Ferrari, A.C. and Robertson, J, to be published in App Phys Letts.Google Scholar