Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T14:12:15.410Z Has data issue: false hasContentIssue false

Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr, Ti)O3 thin films

Published online by Cambridge University Press:  03 March 2011

H. Hu
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
S.B. Krupanidhi
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Room-temperature current-voltage dependence of ultrafine-grained ferroelectric Pb(Zr, Ti)O3 thin films has been investigated. Both strong varistor type behavior and space charge limited conduction (SCLC) were observed. Differences in the current-voltage characteristics are attributed to differences in the nature of the grain boundaries resulting from variations in processing conditions. The strong varistor type behavior is believed to be due to the presence of highly resistive grain boundaries and thus may be termed grain boundary limited conduction (GBLC). A double-depletion-layer barrier model is used to describe the origin of high resistivity of the grain boundaries. It is suggested that the barrier height varies significantly with the applied field due to the nonlinear ferroelectric polarization, and that the barrier is overcome by tunneling at sufficiently high fields. In some other cases, the resistivity of the grain boundaries is comparable to that of the grains, and therefore the intrinsically heterogeneous films degenerate into quasi-homogeneous media, to which the SCLC theory is applicable. As such, a unified grain boundary modeling reconciles different types of conduction mechanisms in the ultrafine-grained ferroelectric thin films. This grain boundary modeling also well accounts for some other dc-related phenomena observed, including abnormal current-voltage dependencies, remanent polarization effect, electrode interface effect, and unusual charging and discharging transients. In addition, many other electrical properties of the ferroelectric films may be better understood by taking the effect of grain boundaries into account.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Paz de Araujo, C. A., McMillan, L. D., Melnick, B. M., Cuchiaro, J. D., and Scott, J. F., Ferroelectrics 104, 241 (1990).CrossRefGoogle Scholar
2Parker, L. H. and Tasch, A. F., IEEE Cir. Dev. Mag. (1), 17 (1990).CrossRefGoogle Scholar
3Melnick, B. M., Paz de Araujo, C. A., McMillan, L. D., Carver, D. A., and Scott, J. F., Ferroelectrics 116, 79 (1991).CrossRefGoogle Scholar
4Duiker, H. M., Beale, P. D., Scott, J. F., Paz de Araujo, C. A., Melnick, B. M., Cuchiaro, J. D., and McMillan, L. D., J. Appl. Phys. 68, 5783 (1990).CrossRefGoogle Scholar
5Johnson, D. J., Amm, D. T., Griswold, E., Sreenivas, K., Yi, G., and Sayer, M., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 289.Google Scholar
6Smyth, D. M., Ferroelectrics 116, 117 (1991).CrossRefGoogle Scholar
7Scott, J. F., Paz de Araujo, C. A., Melnick, B. M., McMillan, L. D., and Zuleeg, R., J. Appl. Phys. 70, 382 (1991).CrossRefGoogle Scholar
8Melnick, B. M., Scott, J. F., Paz de Araujo, C. A., and McMillan, L. D., Ferroelectrics 135, 163 (1992).CrossRefGoogle Scholar
9Waser, R. and Klee, M., Integrated Ferroelectrics 2, 257 (1992).CrossRefGoogle Scholar
10Fox, G. R. and Krupanidhi, S. B., J. Appl. Phys. 74, 1949 (1993).CrossRefGoogle Scholar
11Levinson, L. M. and Philipp, H. R., J. Appl. Phys. 46, 1332 (1975).CrossRefGoogle Scholar
12Krupanidhi, S. B., Hu, H., and Kumar, V., J. Appl. Phys. 71, 376 (1992).CrossRefGoogle Scholar
13Hu, H. and Krupanidhi, S. B., J. Appl. Phys. 74, 3373 (1993).CrossRefGoogle Scholar
14Krupanidhi, S. B., Hu, H., and Fox, G. R., in Integrated Ferroelectrics, edited by Scott, J. F. (in press).Google Scholar
15Larsen, P. K., Kampschoer, G. L. M., Ulenaers, M. J. E., Spierings, G. A. C. M., and Cuppens, R., Appl. Phys. Lett. 59, 611 (1991).CrossRefGoogle Scholar
16Hu, H. and Krupanidhi, S. B., Appl. Phys. Lett. 62, 651 (1993).CrossRefGoogle Scholar
17Bernacki, S. E., in Ferroelectric Thin Films II, edited by Kingon, A. I., Meyers, E. R., and Turtle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 135.Google Scholar
18Lampert, M. A. and Mark, P., Current Injection in Solids (Academic, New York, 1970), Chap. 6.Google Scholar
19Jonscher, A. K., Dielectric Relaxation in Solid (Chelsea Dielectrics, London, 1983), Chaps. 5–7.Google Scholar
20Neumann, H. and Arlt, G., Ferroelectrics 69, 179 (1986).CrossRefGoogle Scholar
21Chen, X., Kingon, A. I., Mantese, L., Auciello, O., and Hsieh, K. Y., in Proc. 4th Int. Symp. on Integrated Ferroelectrics, Monterey, CA, March 1992, p. 264.Google Scholar
22Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981), Chap. 5.Google Scholar
23Tredgold, R. H., Space Charge Conduction in Solid (Elsevier, Amsterdam, 1966), Chap. 4.CrossRefGoogle Scholar
24Weast, R. C. and Astle, M. J., CRC Handbook of Chemistry and Physics, 62nd ed. (CRC, Boca Raton, FL, 1981), E-79.Google Scholar
25Lampert, M. A. and Mark, P., Current Injection in Solids (Academic, New York, 1970), Chaps. 2 and 5.Google Scholar
26Meca, F. and Jonscher, A. K., Thin Solid Films 59, 201 (1979).CrossRefGoogle Scholar
27Moller, H. J., Prog. Mater. Sci. 35, 205 (1991).CrossRefGoogle Scholar
28Pike, G. E. and Seager, C. H., J. Appl. Phys. 50, 3414 (1979).CrossRefGoogle Scholar
29Clarke, D. R., J. Appl. Phys. 50, 6829 (1979).CrossRefGoogle Scholar
30Mandurah, M. M., Saraswat, K. C., Helms, C. R., and Kamins, T. I., J. Appl. Phys. 51, 5755 (1980).CrossRefGoogle Scholar
31Gambino, J. P., Kingery, W. D., Pike, G. E., Philipp, H. R., and Levinson, L. M., J. Appl. Phys. 61, 2571 (1987).CrossRefGoogle Scholar
32Heywang, W., Solid State Electron. 3, 51 (1961).CrossRefGoogle Scholar
33Yin, Z. W., Song, X. Y., and Feng, J. W., Ferroelectrics 94, 269 (1989).CrossRefGoogle Scholar
34Chiang, Y-M. and Takagi, T., J. Am. Ceram. Soc. 73, 3278 (1990).CrossRefGoogle Scholar
35Chiang, Y-M. and Takagi, T., J. Am. Ceram. Soc. 73, 3286 (1990).CrossRefGoogle Scholar
36Wang, D. Y. and Umeya, K., J. Am. Ceram. Soc. 74, 280 (1991).CrossRefGoogle Scholar
37Buchanan, R. C., Armstrong, T. R., and Roseman, R. D., Ferro-electrics 135, 343 (1992).CrossRefGoogle Scholar
38Gerson, R. and Jaffe, H., J. Phys. Chem. Solids 24, 979 (1963).CrossRefGoogle Scholar
39Wang, D. Y. and Umeya, K., J. Am. Ceram. Soc. 73, 669 (1990).CrossRefGoogle Scholar
40Wang, D. Y. and Umeya, K., J. Am. Ceram. Soc. 73, 1574 (1990).CrossRefGoogle Scholar
41Lampert, M. A. and Mark, P., Current Injection in Solids (Academic, New York, 1970), Chap. 1.Google Scholar
42Sharma, B. L., in Semiconductors and Semimetals (Academic, New York, 1981), Vol. 15, Chap. 1.Google Scholar
43Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic, New York, 1971), p. 155.Google Scholar
44Philipp, H. R. and Levinson, L. M., J. Appl. Phys. 47, 3177 (1976).CrossRefGoogle Scholar
45Mahan, G. D., Levinson, L. M., and Philipp, H. R., J. Appl. Phys. 50, 2799 (1979).CrossRefGoogle Scholar
46Simmons, J. G., J. Appl. Phys. 34, 1793 (1963).CrossRefGoogle Scholar
47Simmons, J. G., in Handbook of Thin Film Technology, edited by Maissel, L. I. and Glang, R. (McGraw-Hill, New York, 1970), Chap. 14.Google Scholar
48Peng, C-J., Hu, H., and Krupanidhi, S. B., Appl. Phys. Lett. 63, 1038 (1993).CrossRefGoogle Scholar
49Yeargan, J. R. and Taylor, H. L., J. Appl. Phys. 39, 5600 (1968).CrossRefGoogle Scholar
50Lambeck, P. V. and Jonker, G. H., J. Phys. Chem. Solids 47, 453 (1986).CrossRefGoogle Scholar
51Wurfel, P. and Batra, I. P., Ferroelectrics 12, 55 (1976).CrossRefGoogle Scholar
52Scott, J. F., Pouligny, B., Dimmler, K., Parris, M., Butler, D., and Eaton, S., J. Appl. Phys. 62, 4510 (1987).CrossRefGoogle Scholar
53Harper, J. M. E., Cuomo, J. J., and Kaufman, H. R., J. Vac. Sci. Technol. 21, 737 (1982).CrossRefGoogle Scholar
54Gibson, U. J., in Physics of Thin Films (Academic, New York, 1987), Vol. 13, p. 109.Google Scholar