Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T23:03:32.155Z Has data issue: false hasContentIssue false

Crystalline Growth of Wurtzite GaN on (111) GaAs

Published online by Cambridge University Press:  25 February 2011

J. Ross
Affiliation:
University of California, Department of Electrical Engineering, Berkeley, CA 94720
M. Rubin
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
T. K. Gustafson
Affiliation:
University of California, Department of Electrical Engineering, Berkeley, CA 94720
Get access

Abstract

Gallium Nitride films were grown on (111) Gallium Arsenide substrates using reactive rf magnetron sputtering. Despite a 20% lattice mismatch and different crystal structure, wurtzite GaN films grew epitaxially in basal orientation on (111) GaAs substrates. Heteroepitaxy was observed for growth temperatures between 550–600°C. X-ray diffraction patterns revealed (0002) GaN peak with a full-width-half-maximum (FWHM) as narrow as 0.17°. Possible surface reconstructions to explain the epitaxial growth are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Jpn. J. Appl. Phys., 28, L2112 (1989).CrossRefGoogle Scholar
2. Nakamura, S., Senoh, M. and Mukai, T., Jpn. J. Appl. Phys., 30, L1708 (1991).CrossRefGoogle Scholar
3. Morimoto, Y., Uchiho, K. and Ushio, S., J. Electrochemical Society, 120, 1783 (1973).CrossRefGoogle Scholar
4. Lei, T., Fanciulli, M., Molnar, R., Moustakas, T., Graham, R. and Scanlon, J., Appl. Phys. Lett., 59, 944 (1991).CrossRefGoogle Scholar
5. Kosicki, B. and Kahng, D., J. Vacuum Science and Tech., 6, 593 (1969).CrossRefGoogle Scholar
6. Okura, H., Misawa, S. and Yoshida, S., Appl. Phys. Lett., 59, 1058 (1991).CrossRefGoogle Scholar
7. Mizuta, M., Fujieda, S., Matsumoto, Y. and Kawamura, T., Jpn. J. Appl. Phys., 25, L945 (1986).CrossRefGoogle Scholar
8. Sasaki, T. and Matsuoka, T., J. Appl. Phys., 64, 4531 (1988).CrossRefGoogle Scholar
9. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Crystal Growth, 98, 209 (1989).CrossRefGoogle Scholar
10. Martin, G., Strite, S., Thorton, J., Morkoc, H., Appl. Phys. Lett., 58, 2375 (1991).CrossRefGoogle Scholar
11. Lakshmi, E., Mathur, B., Bhattacharya, A., and Bhargara, V., Thin Solid Films, 24, 77 (1980).CrossRefGoogle Scholar
12. Ross, J., Rubin, M., Mater. Lett., 12, 215 (1991).CrossRefGoogle Scholar
13. Ross, J., Masters thesis, University of California Berkeley, 1990.Google Scholar
14. LeGoues, F., Liehr, M., Renier, M. and Krakow, W., Philosophical Magazine B, 57, 179 (1988).CrossRefGoogle Scholar
15. Zur, A. and McGill, T., J. Appl. Phys., 55, 378 (1984).CrossRefGoogle Scholar
16. Bai, P., Yang, G-R., Lou, L. and Lu, T-M., J. Mater. Res., 5, 989 (1990).CrossRefGoogle Scholar