Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T00:59:56.854Z Has data issue: false hasContentIssue false

Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication

Published online by Cambridge University Press:  03 March 2011

Yan Gao
Affiliation:
Génie Physique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada; and Génie Chimique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada
Ning Guo
Affiliation:
Génie Physique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada
Bertrand Gauvreau
Affiliation:
Génie Physique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada
Mahmoud Rajabian
Affiliation:
Génie Physique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada; and Génie Chimique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada
Olga Skorobogata*
Affiliation:
McGill University, Montréal, Montréal H3A 2T5, Canada
Elio Pone
Affiliation:
Génie Physique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada
Oleg Zabeida
Affiliation:
Génie Physique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada
Ludvik Martinu
Affiliation:
Génie Physique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada
Charles Dubois
Affiliation:
Génie Chimique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada
Maksim Skorobogatiy
Affiliation:
Génie Physique, École Polytechnique de Montréal, Montréal H3C 3A7, Canada
*
b)Address all correspondence to this author. e-mail: maksim.skorobogatiy@polymtl.ca
Get access

Abstract

All-polymer multilayer hollow core photonic fiber preforms were fabricated using consecutive deposition from a solvent phase of two polymers with high and low refractive indices (RI). Processing techniques for two polymer pairs—polystyrene (PS)/poly(methyl methylacrylate) (PMMA) and polycarbonate (PC)/poly(vinylene difloride) (PVDF)—were established. The fabrication process involved consecutive film deposition by solvent evaporation of polymer solutions on the inside of a rotating PMMA or PC tube, used as a cladding material. By injecting right volumes of the polymer solutions into a spinning tube the thickness of each layer could be reliably controlled from 20 to 100 μm. Proper selection of solvents and processing conditions was crucial for ensuring high optical and mechanical quality of a resultant preform, as well as compatibility of different polymer films during co-deposition. Preforms of 10 layers for PMMA/PS material combination and 15 layers for PVDF/PC were demonstrated. Fabrication of preforms with higher number of layers is readily possible and is only a question of preform fabrication time. An alternative method of preform fabrication by co-rolling of polymer bilayers is also presented in this paper, drawing of PMMA/PS, PVDF/PC fibers with up to 32 layers is demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Katsuyama, T. and Matsumura, H.: Infrared Optical Fibers (Adam Hilger, Bristol, UK, 1989), pp. 1, 231.Google Scholar
2Saito, M. and Kikuchi, K.: Infrared optical fiber sensors. Opt. Rev. 4, 527 (1997).CrossRefGoogle Scholar
3Sanghera, J. and Aggarwal, I.: Infrared Fiber Optics (CRC, Boca Raton, FL, 1998), pp. 1, 368.Google Scholar
4 Sensors Optical and Microsystems New Concepts, Materials, Technologies, 1st ed., edited by Martellucci, S., Chester, A.N. and Mignani, A.G. (Springer, New York, 2000), pp. 1326.Google Scholar
5Harrington, J.A.: A review of IR transmitting, hollow waveguides. Fiber Integr. Opt. 19, 211 (2000).CrossRefGoogle Scholar
6Shi, Y.W., Ito, K., Matsuura, Y., and Miyagi, M.: Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared. Opt. Lett. 30, 2867 (2005).CrossRefGoogle Scholar
7Russell, P.: Photonic crystal fibers. Science 299, 358 (2003).CrossRefGoogle ScholarPubMed
8Smith, C.M., Venkataraman, N., Gallagher, M.T., Muller, D., West, J.A., Borrelli, N.F., Allan, D.C., and Koch, K.W.: Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424, 657 (2003).CrossRefGoogle ScholarPubMed
9van Eijkelenborg, M.A., Argyros, A., Barton, G., Bassett, I.M., Fellew, M., Henry, G., Issa, N.A., Large, M.C.J., Manos, S., Padden, W., Poladian, L., and Zagari, J.: Recent progress in microstructured polymer optical fibre fabrication and characterisation. Opt. Fiber Technol. 9, 199 (2003).CrossRefGoogle Scholar
10Katagiri, T., Matsuura, Y., and Miyagi, M.: Photonic bandgap fiber with a silica core and multilayer dielectric cladding. Opt. Lett. 29, 557 (2004).CrossRefGoogle ScholarPubMed
11Temelkuran, B., Hart, S.D., Benoit, G., Joannopoulos, J.D., and Fink, Y.: Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650 (2002).CrossRefGoogle ScholarPubMed
12Hidaka, T., Minamide, H., Ito, H., Nishizawa, J., Tamura, K., and Ichikawa, S.: Ferroelectric PVDF cladding terahertz waveguide. J. Lightwave Technol. 23, 2469 (2005).CrossRefGoogle Scholar
13Harrington, J., George, R., Pedersen, P., and Mueller, E.: Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation. Opt. Express 12, 21 (2004).CrossRefGoogle ScholarPubMed
14Skorobogatiy, M.: Efficient anti-guiding of TE and TM polarizations in low index core waveguides without the need of omnidirectional reflector. Opt. Lett. 30, 2991 (2005).CrossRefGoogle Scholar
15Weinert, A.: Plastic Fiber Optics: Principles, Components, Installation (Wiley-VCH, Berlin, Germany, 1999), pp. 1154.Google Scholar
16Gong, Y.M., Hu, Z.J., Chen, Y.Z., Huang, H.Y., and He, T.B.: Ring-shaped morphology in solution-cast polystyrene poly(methyl methacrylate) block copolymer thin films. Langmuir 21, 11870 (2005).CrossRefGoogle ScholarPubMed
17Xuan, Y., Peng, J., Cui, L., Wang, H.F., Li, B.Y., and Han, Y.C.: Morphology development of ultrathin symmetric diblock copolymer film via solvent vapor treatment. Macromolecules 37, 7301 (2004).CrossRefGoogle Scholar
18Guarini, K.W., Black, C.T., and Yeuing, S.H.I.: Optimization of diblock copolymer thin film self assembly. Adv. Mater. 14, 1290 (2002).3.0.CO;2-N>CrossRefGoogle Scholar
19Walheim, S., Boltau, M., Mlynek, J., Krausch, G., and Steiner, U.: Structure formation via polymer demixing in spin-cast films. Macromolecules 30, 4995 (1997).CrossRefGoogle Scholar
20Tanaka, K., Takahara, A., and Kajiyama, T.: Film-thickness dependence of the surface structure of immiscible polystyrene/poly(methyl methacrylate) blends. Macromolecules 29, 3232 (1996).CrossRefGoogle Scholar
21Heriot, S.Y. and Jones, R.A.L.: An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films. Nat. Mater. 4, 782 (2005).CrossRefGoogle Scholar
22Podgrabinski, T., Hrabovska, E., Svorcik, V., and Hnatowicz, V.: Characterization of polystyrene and doped polymethylmethacrylate thin layers. J. Mater. Sci. Mater. Electron. 16, 761 (2005).CrossRefGoogle Scholar
23Kim, M., Nagarajan, R., Snook, J.H., Samuelson, L.A., and Kumar, J.: Nanostructured assembly of homopolymers for a flexible Bragg grating. Adv. Mater. 17, 631 (2005).CrossRefGoogle Scholar
24Ivan’kova, E.M., Krumova, M., Michler, G.H., and Koets, P.P.: Morphology and toughness of coextruded PS/PMMA multilayers. Colloid Polym. Sci. 282, 203 (2004).CrossRefGoogle Scholar
25Harris, M., Appel, G., and Ade, H.: Surface morphology of annealed polystyrene and poly(methyl methacrylate) thin film blends and bilayers. Macromolecules 36, 3307 (2003).CrossRefGoogle Scholar
26Lin, C.H. and Yang, A.C.M.: Stability of the superplastic behavior of glassy polystyrene thin films in sandwich structures. Macromolecules 34, 4865 (2001).CrossRefGoogle Scholar
27Feng, J., Weng, L., Li, L., and Chan, C.: Compatibilization of polycarbonate and poly(vinylidene fluoride) blends studied by time-of-flight secondary ion mass spectrometry and scanning electron microscopy. Surf. Interface Anal. 29, 168 (2000).3.0.CO;2-I>CrossRefGoogle Scholar
28Moussaif, N., Marechal, P., and Jerome, R.: Ability of PMMA to improve the PC/PVDF interfacial adhesion. Macromolecules 30, 658 (1997).CrossRefGoogle Scholar
29Handbook of Solvents, 1st ed., edited by Wypych, G. (ChemTec Publishing, Toronto, Canada, 2001), pp. 11680.Google Scholar
30Pirori, A. and Nicolais, L.: The kinetics of surface craze growth in polycarbonate exposed to normal hydrocarbons. J. Mater. Sci. 18, 1466 (1983).CrossRefGoogle Scholar
31Harlin, A., Myllymäki, H., and Grahn, K.: Polymeric optical fibres and future prospects in textile integration. AUTEX Res. J. 2, 1 (2002).CrossRefGoogle Scholar