Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-26T16:02:15.323Z Has data issue: false hasContentIssue false

Focused Ion Beam Micromachining of GaN Photonic Devices

Published online by Cambridge University Press:  10 February 2011

Irving Chyr
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati Cincinnati, Ohio 45221-0030, USA, a.steckl@uc.edu
A. J. Steckl
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati Cincinnati, Ohio 45221-0030, USA, a.steckl@uc.edu
Get access

Abstract

Ga+ and Au+ focused ion beams (FIB) are used to micromachine GaN films. The GaN micromachining has been studied at energies from 30-90 keV, incident angle from 0-30°, and number of repetitive scans from 10 to 50 scans. Trenches milled in GaN have vertical and smooth side-walls and very smooth bottoms. The micromachining rate was found to be fairly independent of ion dose, ranging from 0.4 to 0.6 μm3/nC for Ga+ and I to 2 Pm3/nC for Au+. This translates into an effective yield of of 6-7 atoms/ion for Ga+ and 21-26 atoms/ion for Au+. This represents the highest direct FIB removal yield reported to date. We have also investigated the micromachining of GaN substrate material: c-face sapphire. Using FIB Ga+, sapphire has an effective yield of ∼2-2.5 atoms/ion, or approximately 1/3 of the GaN sputtering yield. For the materials investigated, we found the sputtering yield to be inversely proportional to the strength of the material chemical bond. We also describe the application of the FIB μmachining technique to the fabrication of small period Distributed Bragg Reflector (DBR) mirrors for a short cavity GaN laser structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1678 (1994).Google Scholar
2 Edgar, J., J. Mater. Res. 7, 235 (Jan. 1992).Google Scholar
3 Khan, M. A., Olson, D. T., Hove, J. M. Van, and Kuznia, J. N., Appl. Phys. Lett. 58, 1515 (1991).Google Scholar
4 Binet, F., Duboz, J. Y., Laurent, N., Bonnat, C., Collot, P., Hanauer, F., Briot, O., and Aulombard, R. L., Appl. Phys. Lett. 72, 960 (1998).Google Scholar
5 Smith, G. M., Hughes, J. S., Osowski, M. L., Forbes, D. V., and Coleman, J. J., Electron. Lett. 30, 30 (1990).Google Scholar
6 Hofstetter, D., Zappe, H. P., Epler, J. E., and Sochtig, J., Electron. Lett. 30, 1858 (1990).Google Scholar
7 Baba, T., Hamasaki, M., Watanabe, N., Kaewplung, P., Matsutani, A., Mukaihara, T., Koyama, F., and Iga, K., Jpn. J. Appl. Phys. Part 1, 35(2B), 1390 (1996).Google Scholar
8 Yuan, Y., Brock, T., Bhattacharya, P., Caneau, C. and Bhat, R., IEEE Photonics Technol. Lett., 9(7), 881 (1997).Google Scholar
9 Krauss, T. F., Painter, O., Scherer, A., Roberts, J. S., and Rue, R. M. De La, Opt. Eng., 37(4), 1143 (1998).Google Scholar
10 Harriott, L. R. and Temkin, H., Chapter 6 in Integrated Optoelectronics, edited by Dagenais, M., Leheny, R. F., and Crow, J., (Academic Press, New York, 1995).Google Scholar
11 Stecki, A. J., Chen, P., Jackson, H. E., Choo, A. G., Cao, X., Boyd, J. T., and Kumar, M., J. Vac. Sci. Technol. B13, 2570 (1995).Google Scholar
12 Ito, T., Ishikawa, H., Egawa, T., Jimbo, T., Umeno, M., Jpn. J. Appl. Phys. Part 1, 36(12B), 7710 (1997).Google Scholar
13 Katoh, H., Takeuchi, T., Anbe, C., Mizumotos, R., Yamaguchi, S., Weitzel, C., Amano, H., Akasaki, I., Kaneko, Y., Yamado, N., Jpn. J. Appi. Phys. Part 2, 36(4B), L444 (1998).Google Scholar