Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-26T23:58:22.927Z Has data issue: false hasContentIssue false

High-pressure, high-temperature sintering of diamond–SiC composites by ball-milled diamond–Si mixtures

Published online by Cambridge University Press:  31 January 2011

J. Qian
Affiliation:
Department of Physics and Astronomy, TCU, Fort Worth, Texas 76129, and LANSCE, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
G. Voronin
Affiliation:
Department of Physics and Astronomy, TCU, Fort Worth, Texas 76129
T. W. Zerda
Affiliation:
Department of Physics and Astronomy, TCU, Fort Worth, Texas 76129
D. He
Affiliation:
LANSCE, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Y. Zhao
Affiliation:
LANSCE, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

A new method of sintering diamond-silicon carbide composites is proposed. This method is an alternate to the liquid silicon infiltration technique and is based on simultaneous ball milling of diamond and silicon powder mixtures. Composites with fine-grain diamonds embedded in a diamond–SiC nanocrystalline matrix were sintered from these mixtures. Scanning electron microscopy, x-ray diffraction, and Raman scattering were used to characterize the ball-milled precursors and the sintered composites. It was found that the presence of diamond micron-size particles in the initial powder mixture promotes milling of silicone particles and their transformation into the amorphous state. Mechanical properties of the composites, sintered from mixtures of different ball-milling history at different pressure–temperature conditions, (6 GPa/1400 °C and 8 GPa/2000 °C) were studied.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hall, H.T., Science 169, 868 (1970).Google Scholar
2.Voronin, G.A., in High Pressure Sintering of Diamond and CBN Composite Materials by Infiltration, Proceedings of Joint AIRAPT-16 and HPCJ-38 International Conference on High Pressure Science and Technology Kyoto, Japan (World Scientific, Singapore, Japan, 1998), p. 467.Google Scholar
3.Gordeev, S.K., Zhukov, S.G., Danchukova, L.V., and Ekstrom, T.C., Inorg. Mater. 37, 579 (2001).Google Scholar
4.Ko, Y.S., Tsurumi, T., Fukunaga, O., and Yano, T., J. Mater. Sci. 36, 469 (2001).Google Scholar
5.Clark, I.E. and Bex, P.A., Indust. Diamond Rev. 1, 43 (1999).Google Scholar
6.Lipp, M.J., Baonza, V.G., Evans, W.J., and Lorenzana, H.E., Phys. Rev. B 56, 5978 (1997).Google Scholar
7.Prawer, S., Nugent, K.W., Jamieson, D.N., Orwa, J.O., Bursill, L.A., and Peng, J.L., Chem. Phys. Lett. 332, 93 (2000).Google Scholar
8.Gruen, D.M., Ann. Rev. Mater. Sci. 29, 211 (1999).Google Scholar
9.Yoshikawa, M., Mori, Y., Obata, H., Maegawa, M., Katagiri, G., Ishida, H., and Ishitani, A., Appl. Phys. Lett. 67, 694 (1995).Google Scholar
10.Krauss, A.R., Auciello, O., Gruen, D.M., Jayatissa, A., Sumant, A., Tucek, J., Mancini, D.C., Moldovan, N., Erdemir, A., Ersoy, D., Gardos, M.N., Busmann, H.G., Meyer, E.M., and Ding, M.Q., Diamond Relat. Mater. 10, 1952 (2001).Google Scholar
11.Zhu, W., Kochanski, G.P., and Jin, S., Science 282, 1471 (1998).Google Scholar
12.Ohkoshi, M., Akashi, T., Yamada, K., and Sawaoka, A.B., J. Mater. Proc. Tech. 85, 131 (1999).Google Scholar
13.Ekimov, E.A., Gavriliuk, A.G., Palosz, B., Gierlotka, S., Dluzewski, P., Tatianin, E., YKluev, u., Naletov, A.M., and Presz, A., Appl. Phys. Lett. 77, 954 (2000).Google Scholar
14.Shen, T.D., Koch, C.C., McCormick, T.L., Nemanich, R.J., Huang, J.Y., and Huang, J.G., J. Mater. Res. 10, 139 (1995).Google Scholar
15.Zhao, Y., He, D., Daemen, L.L., Huang, J., Shen, T., Schwarz, R.B., Zhu, Y., Bish, D.L., Zhang, J., Shen, G., Qian, J., and Zerda, T.W. (submitted).Google Scholar
16.Huang, J., Zhu, Y.T., and Mori, H., J. Mater. Res. 16, 1178 (2001).Google Scholar
17.Tomlinson, P.N., Pipkin, N.J., Lammer, A., and Burnand, R.P., In-dust. Diamond Rev. 6, 299 (1985).Google Scholar
18.Khvostantsev, L.G., Vereshchagin, L.F., and Novikov, A.P., High Temp.-High Press. 9, 637 (1977).Google Scholar
19.Khvostantsev, L.G. and Verkhniz, A., High Temp.-High Press. 16, 165 (1984).Google Scholar
20.Liebermann, R.C. and Li, B.S., Rev. Mineralogy 37, 459 (1998).Google Scholar
21.Morell, G., Katiyar, R.S., Weisz, S.Z., and Balberg, I., J. Non-Cryst. Solids 194, 78 (1996).Google Scholar
22.Mishra, P. and Jain, K.P., Phys. Rev. B 62, 14790 (2000).Google Scholar
23.Woo, H.K., Lee, C.S., Bello, I., and Lee, S.T., J. Mater. Res. 13, 1738 (1998).Google Scholar
24.Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
25.Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 53, 1126 (1970).Google Scholar
26.Yang, X.Y., Huang, Z.W., Wu, Y.K., and Ye, H.Q., Mater. Sci. Eng. A 300, 278 (2001).Google Scholar
27.Bhaumik, S.K., Divakar, C., Devi, S.U., and Singh, A.K., J. Mater. Res. 14, 906 (1999).Google Scholar
28.Voronin, G.A., Pantea, C., Zerda, T.W., and Ejsmont, K., J. Appl. Phys. 90, 5933 (2001).Google Scholar
29.Chambers, B., J. Phys. Metal. Wiley, New York (1959).Google Scholar
30.Werner, P., Gossmann, H.J., and Jacobson, D.C., Appl. Phys. Lett. 73, 2465 (1998).Google Scholar
31.Qian, J., Pantea, C., Voronin, G., and Zerda, T.W., J. Appl. Phys. 90, 1632 (2001).Google Scholar