Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T01:40:12.226Z Has data issue: false hasContentIssue false

The adhesion energy between polymer thin films and self-assembled monolayers

Published online by Cambridge University Press:  31 January 2011

Andrew V. Zhuk
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Anthony G. Evans
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
John W. Hutchinson
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
George M. Whitesides
Affiliation:
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
Get access

Extract

A superlayer test has been adapted for the measurement of the fracture energy between epoxy thin films and self-assembled monolayers (SAM's) on Au/Ti/Si substrates. The “arrest” mode of analysis has been shown to provide consistent results, particularly when relatively wide lines are used to encourage lateral decohesions. The fracture energy, Γi, of the interface between the monolayer and the epoxy is varied by adjusting the ratio of COOH/CH3 terminal groups. Connections among Γi, the surface energies, and the inelastic deformations occurring in the epoxy are explored upon comparison with interface crack growth simulations.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Evans, A. G. and Hutchinson, J. W., Acta Metall. Mater. 43, 25072530 (1995).CrossRefGoogle Scholar
2.Suo, Z., Shih, C. F., and Varias, A. G., Acta Metall. Mater. 41, 1511557 (1993).CrossRefGoogle Scholar
3.Tvergaard, V. and Hutchinson, J. W., Philos. Mag. A70, 641656 (1994).CrossRefGoogle Scholar
4.Wei, Y. and Hutchinson, J. W., J. Mech. Phys. Solids 45, 12531273 (1997).CrossRefGoogle Scholar
5.Hong, T., Smith, J. R., and Srolovitz, D. J., Acta Metall. Mater. 43, 2721 (1995).CrossRefGoogle Scholar
6.Zhao, A., Smith, J. R., Raynolds, J. E., and Srolovitz, D. J., Interf. Sci. 3, 289 (1996).CrossRefGoogle Scholar
7.Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W., Acta Metall. Mater. 42, 475487 (1994).CrossRefGoogle Scholar
8.Bagchi, A. and Evans, A. G., Interf. Sci. 3, 169193 (1996).CrossRefGoogle Scholar
9.Bagchi, A., Lucas, G. E., Suo, Z., and Evans, A. G., J. Mater. Res. 9, 17341741 (1994).CrossRefGoogle Scholar
10.Bain, C. D., Evall, J., and Whitesides, G. M., J. Am. Chem. Soc. 111, 71557164 (1989).CrossRefGoogle Scholar
11.Dubois, L. H. and Nuzzo, R. G., Ann. Rev. Phys. Chem. 43, 437463 (1992).CrossRefGoogle Scholar
12.Bain, C. D., Troughton, E. B., Tao, Yu-Tai, Evall, J., Whitesides, G. M., and Nuzzo, R., J. Am. Chem. Soc. 111 (1), 321335 (1989).CrossRefGoogle Scholar
13.Wilbur, J. L., Kumar, A., Kim, E., and Whitesides, G., Adv. Mater. 6, 600604 (1994).CrossRefGoogle Scholar
14.Kim, E., Xia, Y., and Whitesides, G. M., Nature 376, 581584 (1995).CrossRefGoogle Scholar
15.He, M. Y., Evans, A. G., and Hutchinson, J. W., Acta Metall. Mater. 45, 34813489 (1997).CrossRefGoogle Scholar
16.Zhao, X-M., Wilbur, J. L., and Whitesides, G. M., Langmuir 12, 32573264 (1996).CrossRefGoogle Scholar
17.Chappey, M. and Meritet, P., Fr. Patent 1,266,612 (1961).Google Scholar
18.Vesenov, D. and Zhuk, A., unpublished.Google Scholar
19.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar
20.Zhuk, A. V., Knunyants, N. N., Oshmyan, V. G., Topolkaraev, V. A., and Berlin, A. A., J. Mater. Sci. 28, 45954606 (1993).CrossRefGoogle Scholar
21.Ashby, M. F., Materials Section in Mechanical Design (Pergamon Press, Oxford, 1992).Google Scholar
22.Rudd, J. A., Witvrouw, A., and Spaepen, F., J. Appl. Phys. 74, 25172523 (1993).CrossRefGoogle Scholar