Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T20:26:05.925Z Has data issue: false hasContentIssue false

Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption

Published online by Cambridge University Press:  31 January 2011

Weiping Cai
Affiliation:
Institute of Solid State Physics, Academia Sinica, Hefei 230031, People's Republic of China, and Institute of Advanced Study, University of Science and Technology of China, Hefei, People's Republic of China
Lide Zhang
Affiliation:
Institute of Solid State Physics, Academia Sinica, Hefei 230031, People's Republic of China, and Institute of Advanced Study, University of Science and Technology of China, Hefei, People's Republic of China
Huicai Zhong
Affiliation:
Institute of Solid State Physics, Academia Sinica, Hefei 230031, People's Republic of China
Guoliang He
Affiliation:
Institute of Solid State Physics, Academia Sinica, Hefei 230031, People's Republic of China
Get access

Abstract

Influences of annealing on the structure of mesoporous silica loaded with silver (Ag) nanoparticles, and on the coarsening of Ag particles within pores of the host were investigated from isothermal sorption. Doping a small amount of Ag nanoparticles into pores of silica and subsequent annealing decreases the measured values of specific surface area and pore volume of porous silica significantly. This is attributed to the presence and coarsening of Ag particles within pores or channels between pores, which result in more and more isolated and unmeasured free spaces. The measured value of a specific surface area for the doped samples cannot represent the real value, which is, in fact, unable to be measured directly. During additional annealing, Ag particles within silica coarsen mainly according to the mechanism of formation of Ag adatoms on pore wall and diffusion of the adatoms along with pore walls. Only the larger particles located in the larger pores can continuously grow. The smaller particles and those located in the channels or pores with smaller dimension will disappear. The activation energy of the ripening process was estimated to be about 0.60 eV, and the migration barrier of Ag adatom on the pore wall of silica is about 0.10 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Coffer, J. L., Beauchamp, G., and Zerda, T. W., J. Non-Cryst. Solids 142, 208 (1992).CrossRefGoogle Scholar
2.Rao, S., Karaguleff, C., Gabel, A., Fortenbery, R., Seaton, C., and Stegeman, G., Appl. Phys. Lett. 46, 801 (1985).CrossRefGoogle Scholar
3.Chun-Guey, Wu and Thomas, B., Science 264, 1758 (1994).Google Scholar
4.Mennig, M., Schmitt, M., Kutsch, B., and Schmidt, H., SPIE Proceedings 2288, 120 (1994).CrossRefGoogle Scholar
5.Judeinstein, P. and Schmidt, H., J. Sol-Gel Technol. 3, 189 (1994).CrossRefGoogle Scholar
6.Kudu, T. K. and Chakravorty, D., Appl. Phys. Lett. 66, 3576 (1995).Google Scholar
7.Chatterjee, A. and Chakravory, D., J. Phys. D: Appl. Phys. 23, 1097 (1990).CrossRefGoogle Scholar
8.Suryanarayana, C., Int. Mater. Rev. 40 (2), 41 (1995).CrossRefGoogle Scholar
9.Cai, W., Tan, M., and Zhang, L., J. Phys.: Condens. Matter 9, 1995 (1997).Google Scholar
10.Cai, W., Tan, M., Wang, G., and Zhang, L., Appl. Phys. Lett. 69, 2980 (1996).CrossRefGoogle Scholar
11.Komiyama, H., Hayashi, A., and Inoue, H., Jpn. J. Appl. Phys. 24, L269 (1985).CrossRefGoogle Scholar
12.Yasuda, T., Komiyama, H., and Tanaka, K., Jpn. J. Appl. Phys. 26, 818 (1987).CrossRefGoogle Scholar
13.Cai, W. and Zhang, L., Chin. Sci. Bull. 43 (7), 614 (1998).CrossRefGoogle Scholar
14.Cai, W. and Zhang, L., J. Phys.: Condens. Matter 9 (34), 7257 (1997).Google Scholar
15.Sato, S., Murakta, T., Suzuki, T., and Ohgawara, T., J. Mater. Sci. 25, 4880 (1990).CrossRefGoogle Scholar
16.Murakta, T., Sato, S., Ohgawara, T., Natanabe, T., and Suzuki, T., J. Mater. Sci. 27, 1567 (1992).CrossRefGoogle Scholar
17.Brunauer, S., Emmett, P. H., and Teller, E., J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
18.Kreibig, U., J. Phys. F: Met. Phys. 4, 999 (1974).CrossRefGoogle Scholar
19.Cohen, R. W., Cody, G. D., Coutts, M. D., and Abeles, B., Phys. Rev. B 8, 3689 (1973).CrossRefGoogle Scholar
20.Priestley, E. B., Abeles, B., and Cohen, R. W., Phys. Rev. B 12, 2121 (1975).CrossRefGoogle Scholar
21.Smithard, M. A., Solid State Commun. 13, 153 (1973).CrossRefGoogle Scholar
22.Halperin, W. P., Rev. Mod. Phys. 58, 533 (1986).CrossRefGoogle Scholar
23.Thomson, W., Philos. Mag. 42, 448 (1871).CrossRefGoogle Scholar
24.Wheeler, A., Catalysis 2, 116 (1955).Google Scholar
25.IUPAC Manual of Symbols and Terminology, Pure Appl. Chem. 31, 578 (1972).Google Scholar
26.Chapon, C. and Henry, C. R., Surf. Sci. 106, 152 (1981).CrossRefGoogle Scholar
27.Stoyanov, S. and Kashchiev, D., in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1981), Vol. 7, p. 71, and references therein.Google Scholar
28.Metois, J. J., Zanghi, J. C., Erre, R., and Kern, R., Thin Solid Films 22, 331 (1974).CrossRefGoogle Scholar
29.Schmeisser, H., Thin Solid Films 22, 83, 99 (1974).CrossRefGoogle Scholar
30.Kashchiev, D., Surf. Sci. 55, 477 (1976).CrossRefGoogle Scholar
31.Donohoe, A. J. and Robins, J. L., Thin Solid Films 33, 363 (1976).CrossRefGoogle Scholar
32.Kuipers, L. and Palmer, R. E., Phys. Rev. B 53 (12), R7646 (1996).CrossRefGoogle Scholar
33.Goldby, I. M., Kuipers, L., Von Issendorff, B., and Palmer, R. E., Appl. Phys. Lett. 69 (19), 2819 (1996).CrossRefGoogle Scholar
34.Bardotti, L., Jensen, P., Hoareau, A., Treilleux, M., and Cabaud, B., Phys. Rev. Lett. 74 (23), 4694 (1995).CrossRefGoogle Scholar
35.Dew, C., Siclen, Van, Phys. Rev. Lett. 75(8), 1574 (1995).Google Scholar
36.Wen, J. M., Evans, J. W., Bartelt, M. C., Burnett, J. W., and Thiel, P. A., Phys. Rev. Lett. 76 (4), 652 (1996).CrossRefGoogle Scholar
37.Weast, R. C., 1989–1990 CRC Handbook of Chemistry and Physics, 70th ed. (CRC Press, Inc., Boca Raton, FL, 1989), p. B128.Google Scholar
38.Verhoeven, J. D., Fundamentals of Physical Metallurgy (John Wiley and Sons, Inc., New York, 1975), p. 400.Google Scholar
39.Brune, H., Roder, H., Boragno, C., and Kern, K., Phys. Rev. Lett. 73 (14), 1955 (1994).CrossRefGoogle Scholar