Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T17:18:56.265Z Has data issue: false hasContentIssue false

Epitaxial growth of Si nanowires by a modified VLS method using molten Ga as growth assistant

Published online by Cambridge University Press:  01 February 2011

Annika Gewalt
Affiliation:
annika.gewalt@ovgu.de, Otto-von-Guericke University, Institute of Micro and Sensor Systems, Magdeburg, Germany
Bodo Kalkofen
Affiliation:
bodo.kalkofen@ovgu.de, Otto-von-Guericke University, Institute of Micro and Sensor Systems, Magdeburg, Saxony-Anhalt, Germany
Marco Lisker
Affiliation:
marco.lisker@ovgu.de, Otto-von-Guericke University, Institute of Micro and Sensor Systems, Magdeburg, Saxony-Anhalt, Germany
Edmund P. Burte
Affiliation:
edmund.burte@ovgu.de, Otto-von-Guericke University, Institute of Micro and Sensor Systems, Magdeburg, Saxony-Anhalt, Germany
Get access

Abstract

In this paper the deposition and morphological characterization of gallium island structures on silicon and first results of silicon wire growth assisted by the created gallium droplets is presented. The islands and wires were grown on (111)-oriented single crystalline p-doped silicon substrates by microwave plasma enhanced chemical vapor deposition (MW PECVD) using trimethylgallium (TMGa) and silane (SiH4) as precursors for island and wire growth, respectively. The samples were investigated by SEM, EDS, XPS, and AFM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chen, L. J. (2007). Journal of Materials Chemistry 17: 46394643.Google Scholar
[2] Pan, Z. W., Dai, S., et al. (2003). Nano Letters 3(9): 12791284.Google Scholar
[3] Wagner, R. S. (1970). New York, Wiley.Google Scholar
[4] Schubert, L., Werner, P., et al. (2004). Applied Physics Letters 84(24): 49684970.Google Scholar
[5] Appell, D., Yang, P., et al. (2002). Nature Publishing Group 419: 553555.Google Scholar
[6] Sacilotti, M., Imhoff, L., et al. (2004). Journal of Crystal Growth 261: 253258.Google Scholar
[7] Cai, X. M., Djurisic, A. B., et al. (2005). Journal of Applied Physics 98: (074313)15.Google Scholar
[8] Griffiths, H., Xu, C., et al. (2007). Surface & Coatings Technology 201: 92159220.Google Scholar
[9] Iacopi, F., Vereecken, P. M., et al. (2007). Nanotechnology 18: 7.Google Scholar
[10] Sharma, , and, S., Sunkara, M. K. (2004). Nanotechnology 15: 130134..Google Scholar
[11] Hofmann, S., Ducati, C., et al. (2003). Journal of Applied Physics 94(9): 60056011.Google Scholar
[12] Gow, T. R., Lin, R., et al. (1990). Journal of Crystal Growth 106: 577592.Google Scholar
[13] Lüth, H. (1988). J. Vac. Sci. Technol. A 7(3): 696700.Google Scholar
[14] Lee, F., Backman, A. L., et al. (1989). Surface Science 216: 173188.Google Scholar
[15] Förster, A. and, Lüth, H. (1989). J. Vac. Sci. Technol. B 7(4): 720724.Google Scholar
[16] Lin, R. and Masel, R. I. (1991). Surface Science 258: 225234.Google Scholar
[17] Shogen, S., Matsumi, Y., et al. (1991) Journal of Applied Physics 70(1): 452468.Google Scholar
[18] Pan, Z. W., Dai, Z. R., et al. (2002). J. AM. CHEM. SOC. 124(8): 18171822.Google Scholar