Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T11:54:36.928Z Has data issue: false hasContentIssue false

Structural Aspects of Metallic Glasses

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

A recent structural model reconciles apparently conflicting features of randomness, short-range order, and medium-range order that coexist in metallic glasses. In this efficient cluster packing model, short-range order can be described by efficiently packed solute-centered clusters, producing more than a dozen established atomic clusters, including icosahedra. The observed preference for icosahedral short-range order in metallic glasses is consistent with the theme of efficient atomic packing and is further favored by solvent-centered clusters. Driven by solute—solute avoidance, medium-range order results from the organization in space of overlapping, percolating (via connected pathways), quasi-equivalent clusters. Cubic-like and icosahedral-like organization of these clusters are consistent with measured medium-range order. New techniques such as fluctuation electron microscopy now provide more detailed experimental studies of medium-range order for comparison with model predictions. Microscopic free volume in the efficient cluster packing model is able to represent experimental and computational results, showing free volume complexes ranging from subatomic to atomic-level sizes. Free volume connects static structural models to dynamic processes such as diffusion and deformation. New approaches dealing with “free” and “anti-free” microscopic volume and coordinated atomic motion show promise for modeling the complex dynamics of structural relaxations such as the glass transition. Future work unifying static and dynamic structural views is suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gaskell, P.H., “Models for the structure of amorphous solids,” in Materials Science and Technology, Zarzycki, J., Ed. (VCH Cambridge, UK, 1991) p. 175.Google Scholar
2.Gaskell, P.H., J. Non-Cryst. Solids 351, 1003 (2005).CrossRefGoogle Scholar
3.Bernal, J.D., Nature 185, 68 (1960).CrossRefGoogle Scholar
4.Bernal, J.D., Mason, J., Nature 188, 910 (1960).CrossRefGoogle Scholar
5.Bernal, J.D., Proc. R. Soc. London, Ser. A 280, 299 (1964).Google Scholar
6.Frost, H.J., Raj, R., J. Am. Ceram. Soc. 65, C19 (1982).CrossRefGoogle Scholar
7.Dodds, J.A., in Physics of Granular Media, Bideau, E., Dodds, J., Eds. (Nova Science Publishers, NY, 1991) p. 57.Google Scholar
8.Gaskell, P.H., J. Non-Cryst. Solids 32, 207 (1979).CrossRefGoogle Scholar
9.Inoue, A., Mater. Sci. Eng. A226–228, 357 (1997).CrossRefGoogle Scholar
10.Gaskell, P.H., in Topics in Applied Physics, Glassy Metals II, Beck, H., Guntherodt, H.-J., Eds. (Springer, Berlin, 1983) p. 5.Google Scholar
11.Sietsma, J., Thijsse, B.J., J. Non-Cryst. Solids 135, 146 (1991).CrossRefGoogle Scholar
12.Lamparter, P., Steeb, S., in Structure of Solids, Gerold, V., Ed. (VCH Weinheim, 1993) p. 217.Google Scholar
13.Hufnagel, T.C., Brennan, S., Phys. Rev. B 67, 014203 (2003).CrossRefGoogle Scholar
14.Ossi, P.M., Disordered Materials (Springer, Berlin, 2003).CrossRefGoogle Scholar
15.Miracle, D.B., J. Non-Cryst. Solids 242, 89 (2004).CrossRefGoogle Scholar
16.Miracle, D.B., Lord, E.A., Ranganathan, S., Trans. JIM 47, 1737 (2006).CrossRefGoogle Scholar
17.Cahn, J.W., Bendersky, L.A., in Amorphous and Nanocrystalline Metals, Busch, R., Hufnagel, T.C., Eckert, J., Inoue, A., Johnson, W.L., Yavari, A.R., Eds., 806 (MRS, Warrendale, PA, 2004) p. 139.Google Scholar
18.Miracle, D.B., Nature Mater. 3, 697 (2004).CrossRefGoogle Scholar
19.Miracle, D.B., Acta Mater. 54, 4317 (2006).CrossRefGoogle Scholar
20.Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., Ma, E., Nature 439, 419 (2006).CrossRefGoogle Scholar
21.Lee, G.W., Gangopadhyay, A.K., Kelton, K.F., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, D.S., Phys. Rev. Lett. 93, 037802 (2004).CrossRefGoogle Scholar
22.Xing, L.Q., Mukhopadhyay, A., Buhro, W.E., Kelton, K.F., Philos. Mag. Lett. 84, 293 (2004).CrossRefGoogle Scholar
23.Zhang, Y., Greer, A.L., Appl. Phys. Lett. 89, 071907 (2006).CrossRefGoogle Scholar
24.Zetterling, F.H.M., Dzugutov, M., Simdyankin, S.I., J. Non-Cryst. Solids 293295, 39 (2001).Google Scholar
25.Finney, J.L., Nature 266, 309 (1977).CrossRefGoogle Scholar
26.Polk, D.E., Acta Metall. 20, 485 (1972).CrossRefGoogle Scholar
27.Frank, F.C., Proc. R. Soc. London, Ser. A 215, 43 (1952).Google Scholar
28.Xing, L.Q., Hufnagel, T.C., Eckert, J., Loser, W., Schultz, L., Appl. Phys. Lett. 77, 1970 (2000).CrossRefGoogle Scholar
29.Saida, J., Matsushita, M., Inoue, A., J. Appl. Phys. 90, 4717 (2001).CrossRefGoogle Scholar
30.Saida, J., Matsushita, M., Inoue, A., Mater. Trans. JIM 42, 1493 (2001).CrossRefGoogle Scholar
31.Kelton, K.F., Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, M.B., Robinson, D.S., Phys. Rev. Lett. 90, 195504 (2003).CrossRefGoogle Scholar
32.Murty, B.S., Ping, D.H., Hono, K., Inoue, A., Acta Mater. 48, 3985 (2000).CrossRefGoogle Scholar
33.Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M.W., Sakurai, T., Mater. Trans. JIM 40, 1181 (1999).CrossRefGoogle Scholar
34.Chen, M.W., Zhang, T., Inoue, A., Appl. Phys. Lett. 75, 1697 (1999).CrossRefGoogle Scholar
35.Inoue, A., Zhang, T., Chan, M.W., Sakurai, T., J. Mater. Res. 15, 2195 (2000).CrossRefGoogle Scholar
36.Kuhn, U., Eckert, J., Mattern, N., Schultz, L., Appl. Phys. Lett. 77, 3176 (2000).CrossRefGoogle Scholar
37.Saida, J., Inoue, A., J. Phys.: Condens. Matter 13, L73 (2001).Google Scholar
38.Kim, T.H., Gangopadhyay, A.K., Xing, L.Q., Lee, G.W., Shen, Y.T., Kelton, K.F., Goldman, A.I., Hyers, R.W., Rogers, J.R., Appl. Phys. Lett. 87, 251924 (2005).CrossRefGoogle Scholar
39.Murty, B.S., Hono, K., Mater. Sci. Eng. A312, 253 (2001).CrossRefGoogle Scholar
40.Luo, W.K., Sheng, H.W., Alamgir, F.M., Bai, J. M., He, J.H., Ma, E., Phys. Rev. Lett. 92, 145502 (2004).CrossRefGoogle Scholar
41.Treacy, M.M.J., Gibson, J.M., Fan, L., Paterson, D. J., McNulty, I., Rep. Prog. Phys. 68, 2899 (2005).CrossRefGoogle Scholar
42.Voyles, P.M., Gerbi, J.E., Treacy, M.M.J., Gibson, J. M., Abelson, J.R., Phys. Rev. Lett. 86, 5514 (2001).CrossRefGoogle Scholar
43.Stratton, W.G., Hamann, J., Perepezko, J.H., Voyles, P.M., Mao, X., Khare, S.V., Appl. Phys. Lett. 86, 141910 (2005).CrossRefGoogle Scholar
44.Gibson, J.M., Treacy, M.M.J., in The Electron: Proceedings of the International Centennial Symposium on the Electron, Kirkland, A., Brown, P.D., Eds., Book 687 (IOM Communications, London, 1998) p. 212.Google Scholar
45.Cargill, G.S., Spaepen, F., J. Non-Cryst. Solids 43, 91 (1981).CrossRefGoogle Scholar
46.Marcus, M.A., Acta Metall. 27, 879 (1979).CrossRefGoogle Scholar
47.Taub, A.I., Spaepen, F., Acta Metall. 28, 1781 (1980).CrossRefGoogle Scholar
48.Van den Beukel, A., Sietsma, J., Acta Metall. 38, 383 (1990).CrossRefGoogle Scholar
49.Harms, U., Jin, O., Schwarz, R.B., J. Non-Cryst. Solids 317, 200 (2003).CrossRefGoogle Scholar
50.Egami, T., Maeda, K., Srolovitz, D., Vitek, V., J. de Phys. 41, C8 272 (1980).Google Scholar
51.Srolovitz, D., Egami, T., Vitek, V., Phys. Rev. B 24, 6936 (1981).CrossRefGoogle Scholar
52.Sietsma, J., Thijsse, B.J., Phys. Rev. B 52, 3248 (1995).CrossRefGoogle Scholar
53.Bernal, J.D., Nature 183, 141 (1959).CrossRefGoogle Scholar
54.Bernal, J.D., in Liquids: Structure, Properties, Solid Interactions, Hughel, T.J., Ed. (Elsevier, Amsterdam, 1965) p. 25.Google Scholar
55.Flores, K.M., Suh, D., Dauskardt, R.H., J. Mater. Res. 17, 1153 (2002).CrossRefGoogle Scholar
56.Asoka-Kumar, P., Hartley, J., Howell, R., Sterne, P. A., Nieh, T.G., Appl. Phys. Lett. 77, 1973 (2000).CrossRefGoogle Scholar
57.Kanungo, B.P., Glade, S.C., Asoka-Kumar, P., Flores, K.M., Intermetallics 12, 1073 (2004).CrossRefGoogle Scholar
58.Nagel, C., Ratzke, K., Schmidtke, E., Faupel, F., Ulfert, W., Phys. Rev. B 60, 9212 (1999).CrossRefGoogle Scholar
59.Suh, D., Asoka-Kumar, P., Sterne, P.A., Howell, R.H., Dauskardt, R.H.,, J. Mater. Res. 18, 2021 (2003).CrossRefGoogle Scholar
60.Flores, K.M., Kanungo, B.P., Glade, S.C., Asoka-Kumar, P., J. Non-Cryst. Solids, 353, 1201 (2007).CrossRefGoogle Scholar
61.Flores, K.M., Sherer, E., Bharathula, A., Chen, H., Jean, Y.C., Acta Mater. 55, 3403 (2007).CrossRefGoogle Scholar
62.Spaepen, F., Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
63.Argon, A.S., Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
64.Cohen, M.H., Turnbull, D., J. Chem. Phys. 31, 1164 (1959).CrossRefGoogle Scholar
65.Batschinski, A.J., Z. Phys. Chem. 84, 643 (1913).CrossRefGoogle Scholar
66.Klugkist, P., Ratzke, K., Rehders, S., Troche, P., Faupel, F., Phys. Rev. Lett. 80, 3288 (1998).CrossRefGoogle Scholar
67.Faupel, F., Frank, W., Macht, M.-P., Mehrer, H., Naundorf, V., Rätzke, K., Schober, H.R., Sharma, S.K., Teichler, H., Rev. Mod. Phys. 75, 237 (2003).CrossRefGoogle Scholar
68.Schober, H.R., Physica 201A, 14 (1993).CrossRefGoogle Scholar
69.DeHey, P., Sietsma, J., Beukel, A.V.D., Acta Mater. 46, 5873 (1998).CrossRefGoogle Scholar
70.Hajlaoui, K., Benameur, T., Vaughan, G., Yavari, A. R., Scripta Mater. 51, 843 (2004).CrossRefGoogle Scholar
71.Stillinger, F.H., Weber, T.A., Science 225, 983 (1984).CrossRefGoogle Scholar
72.Goldstein, M., J. Chem. Phys. 51, 3739 (1969).Google Scholar
73.Egami, T., Rep. Prog. Phys. 47, 1601 (1984).CrossRefGoogle Scholar
74.Suzuki, Y., Haimovic, J., Egami, T., Phys. Rev. 35, 2162 (1987).CrossRefGoogle Scholar
75.Egami, T., Mater. Sci. Eng. A226–228, 261 (1997).CrossRefGoogle Scholar
76.Egami, T., Srolovitz, D., J. Phys. F: Metal Phys. 12, 2414 (1982).CrossRefGoogle Scholar
77.Chen, S.-P., Egami, T., Vitek, V., Phys. Rev. 37, 2440 (1988).CrossRefGoogle Scholar
78.Egami, T., Poon, S. J., Zhang, Z., Keppens, V., Phys. Rev. B 76, 024203 (2007).CrossRefGoogle Scholar