Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T09:18:55.369Z Has data issue: false hasContentIssue false

Electrochemical corrosion study of Sn–XAg–0.5Cu alloys in 3.5% NaCl solution

Published online by Cambridge University Press:  31 January 2011

Udit Surya Mohanty
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
Kwang-Lung Lin*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: matkllin@mail.ncku.edu.tw
Get access

Abstract

The electrochemical corrosion behavior of Sn–XAg–0.5Cu alloys in 3.5% NaCl solution was examined using potentiodynamic polarization techniques. The Ag content in the alloy was varied from 1 to 4 wt%. The polarization curves obtained for the alloys show an active–passive transition followed by a transpassive region. Sn–XAg–0.5Cu alloys with higher Ag content (>2 wt%) show a strong tendency toward passivation. The passivation behavior has been ascribed to the presence of both SnO and SnO2 on the anode surface. Increase in Ag content from 1 to 4 wt% results in a decrease in the corrosion-current density (Icorr) and linear polarization resistance (LPR) of the alloy. Nevertheless, the corrosion potential (Ecorr) shifts toward negative values, and a decrease in corrosion rate is observed. The presence of Cl ion initiates pitting and is responsible for the rupture of the passive layer at a certain breakdown potential. The breakdown potential (EBR) decreases and shifts toward more noble values with increase in Ag content in the alloy. Surface analyses by x-ray photoelectron spectroscopy (XPS) and Auger depth profile studies confirmed the formation of both Sn(II) and Sn(IV) oxides in the passive layer.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Stack, J.R. Tin, lead, and tin-lead alloy plating baths. U.S. Patent No. 2313371, March, 1943Google Scholar
2Carano, M.: Solderability of bright acid chock deposits (aptitude for the soldering of the brilliant tin coatings in acid medium). Plat. Surf. Finish. 70, 58 1983Google Scholar
3Baker, R.G.Pulombo, T.A.: Plat. Surf. Finish. 70, 63 1983Google Scholar
4Kim, J.H., Suh, M.S.Kwon, H.S.: Effects of plating conditions on the microstructure of 80 Sn–20 Pb electrodeposits from an organic sulphonate bath. Surf. Coat. Technol. 78, 56 1996CrossRefGoogle Scholar
5Liu, Y.Pritzker, M.: Effect of pulse plating on composition of Sn–Pb coatings deposited in fluoroborate solutions. J. Appl. Electrochem. 33, 1143 2003CrossRefGoogle Scholar
6European Parliament Proposal for a Directive of the European Parliament and of the Council on Waste Electrical and Electronic Equipment and the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment, (COM 2000) p. 347Google Scholar
7Fujiwara, Y., Enomoto, H., Nagao, T.Hoshika, H.: Composite plating of Sn–Ag alloys for Pb-free soldering. Surf. Coat. Technol. 169–170, 100 2000Google Scholar
8Puippe, J.C.Fluehmann, W.: Electrodeposition and properties of a silver–tin alloy. Plat. Surf. Finish. 70, 46 1983Google Scholar
9Kubota, N.Sato, E.: The properties of silver–tin alloy deposits from pyrophosphate bath. Electrochim. Acta. 30, 305 1985CrossRefGoogle Scholar
10Arai, S., Akatsuka, H.Kaneko, N.: Sn–Ag solder bump formation for flip-chip bonding by electroplating. J. Electrochem. Soc. 150, 10 2003CrossRefGoogle Scholar
11Arai, S., Kaneko, N.Shinohara, N.: Polarographic study on the smoothing of Sn–Ag alloy film electrodeposited from pyrophosphate iodide bath. Electrochemistry 69, 254 2001CrossRefGoogle Scholar
12Arai, S.Watanabe, T.: Microstructure of Sn–Ag alloys electrodeposited from pyrophosphate-iodide solutions. Mater. Trans. 39, 439 1998CrossRefGoogle Scholar
13Khaselev, O., Zavarine, I.S., Vysotskaya, A., Fan, C., Zhang, Y.Abys, J.: Electroplating and properties of Sn Bi and Sn Cu for lead free finishes. Trans. Inst. Met. Finish. 80, 200 2002CrossRefGoogle Scholar
14Shiue, R.K., Tsay, L.W., Lin, C.L.Ou, J.L.: A Study of Sn– Bi–Ag–In lead-free solders. J. Mater. Sci. 38, 1269 2003CrossRefGoogle Scholar
15Guaus, E.Torrent-Burgues, J.: Tin–zinc electrodeposition from sulphate–gluconate baths. J. Electroanal. Chem. 549, 25 2003CrossRefGoogle Scholar
16Wu, C.M.L., Yu, D.Q., Law, C.M.T.Wang, L.: The properties of Sn–9Zn lead free solder alloys doped with trace rare earth elements. J. Electron. Mater. 31, 921 2002CrossRefGoogle Scholar
17Lin, K.L.Sun, L.M.: Electrodeposition of eutectic Sn–Zn alloy by pulse plating. J. Mater. Res. 18, 2203 2003CrossRefGoogle Scholar
18Kaneko, N., Seki, M., Arai, S.Shinohara, N.: Sn–Cu solder bump formation from acid sulfate baths using electroplating method. Electrochemistry 71, 791 2003CrossRefGoogle Scholar
19Fukuda, M., Imayoshi, K.Matsumoto, Y.: Effects of thiourea and polyoxyethylene lauryl ether on electrodeposition of Sn–Ag–Cu alloy as a Pb free solder. J. Electrochem. Soc. 149, C244 2002CrossRefGoogle Scholar
20Shiue, R.K., Tsay, L.W., Lin, C.L.Ou, J.L.: A study of Sn– Bi–Ag–In lead-free solder. J. Mater. Sci. 38, 1269 2003CrossRefGoogle Scholar
21Korhonen, T.M.Kivilahti, J.K.: Thermodynamics of the Sn–In–Ag solder system. J. Electron. Mat. 27, 149 1998CrossRefGoogle Scholar
22JEIDA Challenges and Efforts Towards Commercialization of Lead-Free Solder Road Map 2000, Ver. 13, (Japan Electronics Industry Development Association, 2000Google Scholar
23Bath, J., Handweker, C.Bradley, E.: Research update: lead-free solder alternatives. Circ. Assemb. 11, 5, 30 2000Google Scholar
24Zhao, J., Qi, L., Wang, X.Wang, L.: Influence of Bi on microstructures evolution and mechanical properties in Sn–Ag–Cu lead free solder. J. Alloys Compd. 375, 196 2004CrossRefGoogle Scholar
25Kim, K.S., Huh, S.H.Suganuma, K.: Effects of intermetallic compounds on properties of Sn–Ag–Cu lead free soldered joints. J. Alloys Compd. 352, 226 2003CrossRefGoogle Scholar
26Wu, B.Y., Chan, Y.C.Alam, M.O.: Electrochemical corrosion study of Pb-free solders. J. Mater. Res. 21, 62 2006CrossRefGoogle Scholar
27Oulfajrite, H., Sabbar, A., Boulghallat, M., Jouaiti, A., Lbibb, R.Zrinelli, A.: Electrochemical behavior of a new solder material Sn–In–Ag. Mater. Lett. 57, 4368 2003CrossRefGoogle Scholar
28Chen, K.I.Lin, K.L. International Symposium on Electronic Materials and Packaging, Hsinchu, Taiwan. 49 (2002)Google Scholar
29Adem, E.: VG Scientific Auger Handbook, 1st ed.V.G Scientific Limited East Grinstead, England 1989Google Scholar
30Corrosion, Vol. 13, 9th Ed.,Metals Handbook ASM International Metals Park, OH 1987Google Scholar
31Tanaka, H., Ueta, F., Yoshihara, S.Shirakashi, T.: Effects of reflow processing and flux residue on ionic migration of lead-free solder plating using the quartz crystal microbalance method. Mater. Trans. 42(9), 3401 2001Google Scholar
32Refaey, S.A.M.El-Rehim, S.S. Abd: Inhibition of chloride pitting corrosion of tin in alkaline and near neutral medium by some inorganic anions. Electrochim. Acta. 42, 667 1997CrossRefGoogle Scholar
33Kristen, J.: Atlas of metal ligand equilibrium in aqueous solutions. Chester, 1978 623Google Scholar
34Mishra, R.Balasubramanium, R.: Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corros. Sci. 46, 3019 2004CrossRefGoogle Scholar
35Zhong, L., Zhu, H., Hu, J., Xiao, S.Gau, F.: A passivation mechanism of doped polyaniline on 410 stainless steel in de-aerated H2SO4 solution. Electrochim. Acta 51, 5494 2006CrossRefGoogle Scholar
36Singh, V.B.Gupta, A.: Active, passive and transpassive dissolution of In-718 alloy in acidic solutions. Mater. Chem. Phys. 85(1), 12 2004CrossRefGoogle Scholar
37Kolics, A., Polkinghorne, J.C.Wieckowski, A.: Adsorption of sulfate and chloride ions on aluminium. Electrochim. Acta 43, 2605 1998CrossRefGoogle Scholar
38Ricardson, J.A.Wood, G.C.: A study of the pitting corrosion of Al by scanning electron microscopy. Corros. Sci. 10, 313 1970CrossRefGoogle Scholar
39Von Trzebiatowski, O., Janczak, J.Sutter, T.: Microelectrochemical corrosion studies on lead free Sn–Ag–Cu solder alloys. Oral presentation at E-MRS Fall meeting, 2005.Google Scholar
40Chang, T.C., Hou, M.H., Wang, M.C.Lin, D.Y.: Electrochemical behaviors of the Sn–9Zn–XAg lead-free solders in a 3.5 wt% NaCl solution. J. Electrochem. Soc. 151(7), C484 2004CrossRefGoogle Scholar
41Moulder, J.F., Stickle, W.F., Sobol, P.E.Bomben, K.D.Handbook of X-Ray Photo Electron Spectroscopy, 2nd ed.Perkin Elmer Corporation Physical Electronics Division 1992Google Scholar
42Katayama, A.: Electroxidation of methanol on a platinum–tin oxide catalyst. J. Phys. Chem. 84, 376 1980CrossRefGoogle Scholar
43Ansell, R.O., Dickinson, T., Povey, A.F.Sherwood, P.M.A.: X-ray photoelectron spectroscopic studies of tin electrodes after polarization in sodium hydroxide solution. J. Electrochem. Soc. 124(9), 1360 1977CrossRefGoogle Scholar
44Briggs, D.Seah, M.P.: Practical Surface Analysis,, Publication No. 150, Vol. 1, 2nd ed. (John Wiley and Sons 1993)Google Scholar
45Chuang, T.J., Brundle, C.R.Rice, D.W.: Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf. Sci. 59, 413 1979CrossRefGoogle Scholar
46Amanullah, F.M., Pratap, K.J.Babu, V. Hari: Compositional analysis and depth profile studies on undoped and doped tin oxide films prepared by spray technique. Mater. Sci. Eng., A B52, 93 1998CrossRefGoogle Scholar