Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-17T22:10:34.844Z Has data issue: false hasContentIssue false

Microstructural evolution during the heat treatment of nanocrystalline alloys

Published online by Cambridge University Press:  31 January 2011

A.J. Detor
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
C.A. Schuh*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a)Address all correspondence to this author. e-mail: schuh@mit.edu
Get access

Abstract

Nanocrystalline alloys often show exceptional thermal stability as a consequence of kinetic and thermodynamic impediments to grain growth. However, evaluating the various contributions to stability requires detailed investigation of the solute distribution, which is challenging within the fine structural-length-scales of nanocrystalline materials. In the present work, we use a variety of techniques to assess changes in the grain size, chemical ordering, grain-boundary segregation, and grain-boundary structure during the heat treatment of Ni–W specimens synthesized over a wide range of grain sizes from 3 to 70 nm. A schematic microstructural evolution map is also developed based on analytical models of the various processes activated during annealing, highlighting the effects of alloying in nanocrystalline materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hibbard, G., Erb, U., Aust, K.T., Klement, U.Palumbo, G.: Thermal stability of nanostructured electrodeposits. Mater. Sci. Forum 386–388, 387 2002CrossRefGoogle Scholar
2Hibbard, G., Aust, K.T., Palumbo, G.Erb, U.: Thermal stability of electrodeposited nanocrystalline cobalt. Scripta Mater. 44, 513 2001CrossRefGoogle Scholar
3da Silva, M.Klement, U.: A comparison of thermal stability in nanocrystalline Ni- and Co-based materials. Z. Metallkd. 96, 1009 2005CrossRefGoogle Scholar
4Klement, U., Erb, U., ElSherik, A.M.Aust, K.T.: Thermal stability of nanocrystalline Ni. Mater. Sci. Eng., A 203, 177 1995CrossRefGoogle Scholar
5Malow, T.R.Koch, C.C.: Thermal stability of nanocrystalline materials. Mater. Sci. Forum 225–227, 595 1996CrossRefGoogle Scholar
6Birringer, R.: Nanocrystalline materials. Mater. Sci. Eng., A 117, 33 1989CrossRefGoogle Scholar
7Gianola, D.S., Warner, D.H., Molinari, J.F.Hemker, K.J.: Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al. Scripta Mater. 55, 649 2006CrossRefGoogle Scholar
8Gianola, D.S., Van Petegem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H.Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 2006CrossRefGoogle Scholar
9Gai, P.L., Zhang, K.Weertman, J.: Electron microscopy study of nanocrystalline copper deformed by a microhardness indenter. Scripta Mater. 56, 25 2007CrossRefGoogle Scholar
10Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 1989CrossRefGoogle Scholar
11Meyers, M.A., Mishra, A.Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 2006CrossRefGoogle Scholar
12Tjong, C.S.Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng., R 45, 1 2004CrossRefGoogle Scholar
13Suryanarayana, C.Koch, C.C.: Nanocrystalline materials-Current research and future directions. Hyperfine Interact. 130, 5 2000CrossRefGoogle Scholar
14Gleiter, H.: Nanostructured materials: State of the art and perspectives. Nanostruct. Mater. 6, 3 1995CrossRefGoogle Scholar
15Weertman, J.R.: Hall-Petch strengthening in nanocrystalline metals. Mater. Sci. Eng., A 166, 161 1993CrossRefGoogle Scholar
16Volpp, T., Goring, E., Kuschke, W.M.Arzt, E.: Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders. Nanostruct. Mater. 8, 855 1997CrossRefGoogle Scholar
17Murty, B.S., Datta, M.K.Pabi, S.K.: Structure and thermal stability of nanocrystalline materials. Sadhana 28, 23 2003CrossRefGoogle Scholar
18Varin, R.A.Romanowska-Haftek, E.: On the kinetics of the spreading of extrinsic grain-boundary dislocations. Metall. Trans. A 17, 1967 1986CrossRefGoogle Scholar
19Pumphrey, P.H.Gleiter, H.: Annealing of dislocations in high-angle grain-boundaries. Philos. Mag. 30, 593 1974CrossRefGoogle Scholar
20Jang, D.Atzmon, M.: Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe. J. Appl. Phys. 99, 083504 2006CrossRefGoogle Scholar
21Klement, U., Erb, U.Aust, K.T.: Investigations of the grain growth behaviour of nanocrystalline nickel. Nanostruct. Mater. 6, 581 1995CrossRefGoogle Scholar
22Tschope, A., Birringer, R.Gleiter, H.: Calorimetric measurements of the thermal relaxation in nanocrystalline platinum. J. Appl. Phys. 71, 5391 1992CrossRefGoogle Scholar
23Eckert, J., Holzer, J.C., Krill, C.E.Johnson, W.L.: Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition. J. Mater. Res. 7, 1751 1992CrossRefGoogle Scholar
24Gutkin, M.Y., Ovid’ko, I.A.Pande, C.S.: Yield stress of nanocrystalline materials: Role of grain-boundary dislocations, triple junctions and Coble creep. Philos. Mag. 84, 847 2004CrossRefGoogle Scholar
25Masumura, R.A., Hazzledine, P.M.Pande, C.S.: Yield stress of fine grained materials. Acta Mater. 46, 4527 1998CrossRefGoogle Scholar
26Hasnaoui, A., Van Swygenhoven, H.Derlet, P.M.: On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular-dynamics computer simulation. Acta Mater. 50, 3927 2002CrossRefGoogle Scholar
27Sanders, P.G., Fougere, G.E., Thompson, L.J., Eastman, J.A.Weertman, J.R.: Improvements in the synthesis and compaction of nanocrystalline materials. Nanostruct. Mater. 8, 243 1997CrossRefGoogle Scholar
28Sanders, P.G., Youngdahl, C.J.Weertman, J.R.: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng. 234, 77 1997CrossRefGoogle Scholar
29Shvindlerman, L.S.Gottstein, G.: Efficiency of drag mechanisms for inhibition of grain growth in nanocrystalline materials. Z. Metallkd. 95, 239 2004CrossRefGoogle Scholar
30Shvindlerman, L.S.Gottstein, G.: Cornerstones of grain-structure evolution and stability: Vacancies, boundaries, triple junctions. J. Mater. Sci. 40, 819 2005CrossRefGoogle Scholar
31Michels, A., Krill, C.E., Ehrhardt, H., Birringer, R.Wu, D.T.: Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47, 2143 1999CrossRefGoogle Scholar
32Beke, D.L., Cserhati, C.Szabo, I.A.: Segregation inhibited grain coarsening in nanocrystalline alloys. J. Appl. Phys. 95, 4996 2004CrossRefGoogle Scholar
33Kirchheim, R.: Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 2002CrossRefGoogle Scholar
34Krill, C.E., Ehrhardt, H.Birringer, R.: Thermodynamic stabilization of nanocrystallinity. Z. Metallkd. 96, 1134 2005CrossRefGoogle Scholar
35Liu, F.Kirchheim, R.: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264, 385 2004CrossRefGoogle Scholar
36Weissmuller, J.: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 1993CrossRefGoogle Scholar
37Detor, A.J.Schuh, C.A.: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 2007CrossRefGoogle Scholar
38Schuh, C.A., Nieh, T.G.Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 2003CrossRefGoogle Scholar
39Detor, A.J., Miller, M.K.Schuh, C.A.: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 2006CrossRefGoogle Scholar
40Hentschel, T., Isheim, D., Kirchheim, R., Mueller, F.Kreye, H.: Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy. Acta Mater. 48, 933 2000CrossRefGoogle Scholar
41Talin, A.A., Marquis, E.A., Goods, S.H., Kelly, J.J.Miller, M.K.: Thermal stability of Ni-Mn electrodeposits. Acta Mater. 54, 1935 2006CrossRefGoogle Scholar
42Farber, B., Cadel, E., Menand, A., Schmitz, G.Kirchheim, R.: Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48, 789 2000CrossRefGoogle Scholar
43Choi, P., Al-Kassab, T., Gartner, F., Kreye, H.Kirchheim, R.: Thermal stability of nanocrystalline nickel-18 at.% tungsten alloy investigated with the tomographic atom probe. Mater. Sci. Eng., A 353, 74 2003CrossRefGoogle Scholar
44Choi, P., Da Silva, M., Klement, U., Al-Kassab, T.Kirchheim, R.: Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P. Acta Mater. 53, 4473 2005CrossRefGoogle Scholar
45Kizuka, T., Nakagami, Y., Ohata, T., Kanazawa, I., Ichinose, H., Murakami, H.Ishida, Y.: Structure and thermal-stability of nanocrystalline silver studied by transmission electron-microscopy and positron-annihilation spectroscopy. Philos. Mag. A 69, 551 1994CrossRefGoogle Scholar
46Kuriplach, J., van Petegem, S., Hou, M., Zhurkin, E.E., van Swygenhoven, H., Torre, F. Dalla, van Tendeloo, G., Yandouzi, M., Schryvers, D., Segers, D., Morales, A.L., Ettaoussi, S.Dauwe, C.: Positron annihilation study of nanocrystalline Ni3Al: Simulations and measurements. Mater. Sci. Forum 363–3, 94 2001CrossRefGoogle Scholar
47Segers, D., Van Petegem, S., Loffler, J.F., Van Swygenhoven, H., Wagner, W.Dauwe, C.: Positron annihilation study of nanocrystalline iron. Nanostruct. Mater. 12, 1059 1999CrossRefGoogle Scholar
48Weigand, H., Sprengel, W., Rower, R., Schaefer, H.E., Wejrzanowski, T.Kelsch, M.: Interfacial free volumes and segregation effects in nanocrystalline Pd85Zr15 studied by positron annihilation. Appl. Phys. Lett. 84, 3370 2004CrossRefGoogle Scholar
49Weertman, J.Sanders, P.G.: Plastic deformation of nanocrystalline metals. Solid State Phenomena 35–36, 249 1994Google Scholar
50Eckert, J., Holzer, J.C.Johnson, W.L.: Thermal-stability and grain-growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys. J. Appl. Phys. 73, 131 1993CrossRefGoogle Scholar
51Lu, K., Wei, W.D.Wang, J.T.: Grain-growth kinetics and interfacial energies in nanocrystalline Ni-P alloys. J. Appl. Phys. 69, 7345 1991CrossRefGoogle Scholar
52Ebrahimi, F.Li, H.Q.: Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys. Scripta Mater. 55, 263 2006CrossRefGoogle Scholar
53Boylan, K., Ostrander, D., Erb, U., Palumbo, G.Aust, K.T.: In-situ TEM study of the thermal stability of nanocrystalline Ni-P. Scripta Metall. Mater. 25, 2711 1991CrossRefGoogle Scholar
54Yamasaki, T., Tomohira, R., Ogino, Y., Schlossmacher, P.Ehrlich, K.: Formation of ductile amorphous and nanocrystalline Ni-W alloys by electrodeposition. Plat. Surf. Fin. 87, 148 2000Google Scholar
55Zhang, Z., Zhou, F.Lavernia, E.J.: On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metall. Mater. Trans. A 34, 1349 2003CrossRefGoogle Scholar
56Klug, H.P.Alexander, L.E.: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials Wiley New York 1974Google Scholar
57Cullity, B.D.: Elements of X-Ray Diffraction Addison-Wesley Publishing Company, Inc. Reading, MA 1978Google Scholar
58Detor, A.J., Miller, M.K.Schuh, C.A. Measuring grain boundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography. Philos. Mag. Lett.,87, 581 2007CrossRefGoogle Scholar
59Gabriel, A., Lukas, H.L., Allibert, C.H.Ansara, I.: Experimental and calculated phase diagrams of the Ni-W, Co-W, and Co-Ni-W systems. Z. Metallkd. 76, 589 1985Google Scholar
60Hibbard, G.D., McCrea, J.L., Palumbo, G., Aust, K.T.Erb, U.: An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni. Scripta Mater. 47, 83 2002CrossRefGoogle Scholar
61Mishra, N.S.Ranganathan, S.: Electron-microscopy and diffraction of ordering in an off-stoichiometric Ni-W alloy. Scripta Metall. Mater. 27, 1337 1992CrossRefGoogle Scholar
62Mishra, N.S.Ranganathan, S.: Electron-microscopy and diffraction of ordering in Ni-W alloys. Acta Metall. Mater. 43, 2287 1995CrossRefGoogle Scholar
63Mishra, N.S., Singh, C.D.Ranganathan, S.: Order hardening in nickel molybdenum and nickel tungsten alloys. J. Mater. Sci. 27, 1599 1992CrossRefGoogle Scholar
64Handbooks, ASM: Alloy Phase Diagrams, Vol. 3, ASM International Materials Park, OH 2003Google Scholar
65Mishra, N.S.Ranganathan, S.: Electron-microscopy and diffraction of ordering in a Ni-25wt%Mo alloy. Mater. Sci. Eng. 150, 75 1992CrossRefGoogle Scholar
66Spruiell, J.E.Stansbury, E.E.: X-ray study of short-range order in nickel alloys containing 10.7 and 20.0 at.% molybdenum. J. Phys. Chem. Solids 26, 811 1965CrossRefGoogle Scholar
67Das, S.K., Okamoto, P.R., Fisher, P.M.J.Thomas, G.: Short-range order in Ni-Mo, Au-Cr, Au-V and Au-Mn alloys. Acta Metall. Mater. 21, 913 1973CrossRefGoogle Scholar
68Okamoto, P.R.Thomas, G.: On short range order and micro-domains in the Ni4Mo system. Acta Metall. Mater. 19, 825 1971CrossRefGoogle Scholar
69Stobbs, W.M.Stobbs, S.H.: Short-range order in (1-1/2-0) special-point alloys. Philos. Mag. B 53, 537 1986CrossRefGoogle Scholar
70Cao, S.Q., Brooks, C.R.Allard, L.: In-situ transmission electron-microscopy study of ordering in a splat-cooled Ni-20 at-percent mo alloy. Mater Charact. 34, 87 1995CrossRefGoogle Scholar
71Kulkarni, U.D.: Monte Carlo simulation of ordering transformations in Ni-Mo-based alloys. Acta Mater. 52, 2721 2004CrossRefGoogle Scholar
72Arya, A., Banerjee, S., Das, G.P., Dasgupta, I., Saha-Dasgupta, T.Mookerjee, A.: A first-principles thermodynamic approach to ordering in Ni-Mo alloys. Acta Mater. 49, 3575 2001CrossRefGoogle Scholar
73Hata, S., Fujita, H., Schlesier, C.G., Matsumura, S., Kuwano, N.Oki, K.: Monte Carlo study of ordering processes in fcc-based Ni-Mo alloys. Mater Trans., JIM 39, 133 1998CrossRefGoogle Scholar
74Kumar, M.Vasudevan, V.K.: Ordering reactions in an Ni-25Mo-8Cr alloy. Acta Mater. 44, 1591 1996CrossRefGoogle Scholar
75Raub, E.Muller, K.: Fundamentals of Metal Deposition Elsevier Publishing Company New York 1967Google Scholar
76Farkas, D.Jang, H.: Grain-boundary ordering, segregation, and melting transitions in a two-dimensional lattice-gas model. Phys. Rev. 39, 11769 1989CrossRefGoogle Scholar
77Detor, A.J.Schuh, C.A.: Grain boundary segregation, chemical ordering, and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni-W system. Acta Mater. 55, 4221 2007CrossRefGoogle Scholar
78Palumbo, G., Thorpe, S.J.Aust, K.T.: On the contribution of triple junctions to the structure and properties of nanocrystalline materials. Scripta Metall. Mater. 24, 1347 1990CrossRefGoogle Scholar
79Sutton, A.P.Balluffi, R.W.: Interfaces in Crystalline Materials Oxford University Press New York 1995Google Scholar
80Forbes, R.G.: Field evaporation theory: A review of basic ideas. Appl. Surf. Sci. 87–88, 1 1995CrossRefGoogle Scholar
81Abraham, M., Holdway, P., Thuvander, M., Cerezo, A.Smith, G.D.W.: Thermal stability of electrodeposited nanocrystalline nickel. Surf Eng. 18, 151 2002CrossRefGoogle Scholar
82Miller, M.K.: Three-dimensional atom probes. J. Microsc. 186, 1 1997CrossRefGoogle Scholar
83Upmanyu, M., Srolovitz, D.J., Shvindlerman, L.S.Gottstein, G.: Vacancy generation during grain boundary migration. Interface Sci. 6, 287 1998Google Scholar
84Estrin, Y., Gottstein, G.Shvindlerman, L.S.: Thermodynamic effects on the kinetics of vacancy-generating processes. Acta Mater. 47, 3541 1999CrossRefGoogle Scholar
85Tingdong, X.Buyuan, C.: Kinetics of non-equilibrium grain-boundary segregation. Prog. Mater. Sci. 49, 109 2004CrossRefGoogle Scholar
86Burke, J.E.: Some factors affecting the rate of grain growth in metals. Trans. Metall. Soc. AIME 180, 73 1949Google Scholar
87Burke, J.E.Turnbull, D.: Recrystallization and grain growth. Prog. Metal. Phys. 3, 220 1952CrossRefGoogle Scholar
88Humphreys, F.J.Hatherly, M.: Recrystallization and Related Annealing Phenomena Elsevier Boston, MA 2004Google Scholar
89Nazarov, A.A.: Kinetics of grain boundary recovery in deformed polycrystals. Interface Sci. 8, 315 2000CrossRefGoogle Scholar
90Brown, A.M.Ashby, M.F.: Correlations for diffusion constants. Acta Metall. Mater. 28, 1085 1980CrossRefGoogle Scholar
91Smithells Metals Reference Book, edited by W.F. Gale and T.C. Totemeier Elsevier Butterworth-Heinemann Oxford 2004Google Scholar
92Millett, P.C., Selvam, R.P.Saxena, A.: Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater. 54, 297 2006CrossRefGoogle Scholar
93Millett, P.C., Selvan, R.P., Bansal, S.Saxena, A.: Atomistic simulation of grain boundary energetics: Effects of dopants. Acta Mater. 53, 3671 2005CrossRefGoogle Scholar
94Liu, F.Kirchheim, R.: Comparison between kinetic and thermodynamic effects on grain growth. Thin Solid Films 466, 108 2004CrossRefGoogle Scholar
95Seah, M.P.: Grain boundary segregation. J. Phys. F 10, 1043 1980CrossRefGoogle Scholar
96McLean, D.: Grain Boundaries in Metals Clarendon Press Oxford 1957Google Scholar
97Mishin, Y.Herzig, C.: Diffusion in fine-grained materials: Theoretical aspects and experimental possibilities. Nanostruct. Mater. 6, 859 1995CrossRefGoogle Scholar