Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T11:14:29.640Z Has data issue: false hasContentIssue false

Raman study of fresnoite-type materials: Polarized single crystal, crystalline powders, and glasses

Published online by Cambridge University Press:  31 January 2011

S.A. Markgraf
Affiliation:
Hawaii Institute of Geophysics, School of Ocean and Earth Science and Technology (SOEST), University of Hawaii, 2525 Correa Road, Honolulu, Hawaii 96822
S.K. Sharma
Affiliation:
Hawaii Institute of Geophysics, School of Ocean and Earth Science and Technology (SOEST), University of Hawaii, 2525 Correa Road, Honolulu, Hawaii 96822
A.S. Bhalla
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Raman spectra are reported for fresnoite-type [Ba2Ti(Si, Ge)2O8] materials. Single crystal and glasses of the endmember compositions, Ba2TiSi2O8 (BTS) and Ba2TiGe2O8 (BTG), along with crystalline powders along the pseudobinary join, Ba2TiSi−xGe2−xO8, are discussed. The polarized single-crystal Raman spectra of BTS show the vibrational bands of the Si2O7 and TiO5 molecular groups. The v (Si–O–Si) mode is found at 666 cm−1, and is relatively weak. The strongest bands in the BTS single crystal spectra are found at 858 cm−1 and 873 cm−1. These are attributed to the v (SiO3) modes and the stretching of a short Ti–O bond, with mixing between them evident. The BTG single crystal polarized Raman spectra show the vs(Ge–O–Ge) mode at 521 cm−1, and a strong band at 841 cm−1 assigned to the stretch of the short Ti–O bond. The angular dependence of the TO-LO splitting is cataloged for the A1(z) stretching modes. The vibrational characteristics of both BTS and BTG are dominated by the molecular groups, and do not show behavior indicative of a sheet structure composed of TiO5 and (Si, Ge)2O7 groups. Raman investigation of the crystalline powders points to the presence of Si2O7, Ge2O7, and SiGeO7 groups within the nonendmember compositions. The BTG glass spectra show correspondence with the BTG crystalline Raman spectra; the vs(Ge–O–Ge) mode occurs at 518 cm−1 in the glass. Fivefold coordinated titanium may be present in the BTG glass, as revealed by a very strong band at 824 cm−1 in the I spectrum. BTS glass spectra also show some similarity with the BTS crystalline spectrum; the strongest band is found at 836 cm−1 in the I glass spectrum. Through comparison with other titania-silicate glasses, we conclude that the BTS glass has a structure similar to the crystalline phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gabelica-Robert, M. and Tarte, P.Phys. Chem. Minerals 7, 26 (1981).CrossRefGoogle Scholar
2Galy, J. and Carpy, A.Acta Crystallogr. B31, 1714 (1975).Google Scholar
3Schmid, H.Genequand, P.Tippmann, H.Pouilly, G. and Guedu, H., J. Mater. Sci. 13, 2257 (1978).CrossRefGoogle Scholar
4Moore, P. B. and Louisnathan, S. J.Z. Kristallogr. 130, 438 (1969).CrossRefGoogle Scholar
5Markgraf, S.A.Halliyal, A.Bhalla, A.S.Newnham, R.E. and Prewitt, C.T.Ferroelec. 62, 17 (1985).CrossRefGoogle Scholar
6Iijima, K.Marumo, F.Kimura, M. and Kawamura, T.J. Chem. Soc. Jpn. 10, 1557 (1981).Google Scholar
7Kimura, M.Utsumi, K. and Nanamatsu, S.J. Appl. Phys. 47, 2249 (1976).CrossRefGoogle Scholar
8Iijima, K.Marumo, F.Kimura, M. and Kawamura, T.Miner. J. 11, 107 (1982).CrossRefGoogle Scholar
9Markgraf, S.A.Randall, C.A.Bhalla, A.S. and Reeder, R.J.Solid State Commun. 75, 821 (1990).CrossRefGoogle Scholar
10Markgraf, S.A. and Bhalla, A.S.Phase Trans. 18, 55 (1989).CrossRefGoogle Scholar
11Masse, R. and Durif, A.Bull. Soc. fr. Mineral. Cristallogr. XC 407 (1967).Google Scholar
12Blasse, G.J. Inorg. Nucl. Chem. 41, 639 (1979).CrossRefGoogle Scholar
13Ray, C.S. and Day, D.E.J. Non-Cryst. Solids 81, 173 (1986).CrossRefGoogle Scholar
14Hayes, W. and Loudon, R.Scattering of Light by Crystals (Wiley, New York, 1978), pp. 143200.Google Scholar
15Gualberto, G.M. and Arguello, C.A.Solid State Commun. 14, 911 (1974).CrossRefGoogle Scholar
16Haussuhl, S.Eckstein, J.Recker, K. and Wallrafen, F.J. Cryst. Growth 40, 200 (1977).CrossRefGoogle Scholar
17Drafall, L.E. and Spear, K.E.J. Cryst. Growth 33, 180 (1976).CrossRefGoogle Scholar
18Markgraf, S.A.Randall, C.A. and Bhalla, A.S. (unpublished research).Google Scholar
19Barker, A. S.Phys. Rev. 132, 1474 (1963).CrossRefGoogle Scholar
20Tarte, P.Pottier, M. J. and Proces, A. M.Spectrochim. Acta 29A, 1017 (1973).Google Scholar
21Gabelica-Robert, M. and Tarte, P.J. Solid State Chem. 27, 179 (1979).CrossRefGoogle Scholar
22Gabelica-Robert, M. and Tarte, P.Spectrochim. Acta 35A, 649 (1979).Google Scholar
23Lazarev, A. N.Vibrational Spectra and Structure of Silicates (Consultants Bureau, New York, 1972), pp. 6372.Google Scholar
24Sharma, S.K.Yoder, H. S. Jr. , and Matson, D.W.Geochim. Cosmochim. Acta 52, 1961 (1988).Google Scholar
25Kimata, M. and Ii, N.N. Jb. Miner. Mh., 110 (1981).Google Scholar
26Stidham, H.D.Bates, J.B. and Finch, C.B.J. Phys. Chem. 80, 1226 (1976).CrossRefGoogle Scholar
27Lam, P. K.Yu, R.Lee, M. W. and Sharma, S. K.Am. Mineral. 75, 109 (1990).Google Scholar
28Paques-Ledent, M. T., Spectrochim. Acta 32A, 1339 (1976).Google Scholar
29Gonzalez-Vilchez, F. and Griffith, W.P.J. Chem. Soc. Dalton 1416 (1972).Google Scholar
30Wu, K. K. and Brown, I. D.Acta Crystallogr. B29, 2009 (1973).Google Scholar
31Gunter, J.R. and Jameson, G. B.Acta Crystallogr. C40, 207 (1984).Google Scholar
32Wilkinson, G.R.The Raman Effect, edited by Anderson, A. (Marcel Dekker, Inc., New York, 1973), p. 829.Google Scholar
33Markgraf, S.A.Sharma, S.K. and Bhalla, A.S.J. Am. Ceram. Soc. 75, 2630 (1992).CrossRefGoogle Scholar
34Matson, D. W. and Sharma, S. K.Geochim. Cosmochim. Acta 49, 1913 (1985).CrossRefGoogle Scholar
35Bobovich, Y. S.Opt. Spectrosc. 14, 343 (1963).Google Scholar
36Hanada, T. and Soga, N.J. Non-Cryst. Solids 38/39, 105 (1980).CrossRefGoogle Scholar
37Yarker, C.A.Johnson, P.A.V.Wright, A.C.Wong, J.Greegor, R.B., Lytle, F. W. and Sinclair, R. N.J. Non-Cryst. Solids 79, 117 (1986).CrossRefGoogle Scholar