Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T15:30:36.269Z Has data issue: false hasContentIssue false

A link between p-type electrical conduction and microwave dielectric loss in highly ordered Ba(Co1/3Nb2/3)O3 ceramics

Published online by Cambridge University Press:  31 January 2011

Mehdi Mirsaneh
Affiliation:
Ceramics and Composites Laboratory, Department of Engineering Materials, The University of Sheffield, Sheffield, S1 3JD United Kingdom
Michael T. Lanagan
Affiliation:
Center for Dielectric Studies, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Derek C. Sinclair*
Affiliation:
Ceramics and Composites Laboratory, Department of Engineering Materials, The University of Sheffield, Sheffield, S1 3JD United Kingdom
*
b)Address all correspondence to this author. e‐mail: D.C.Sinclair@sheffield.ac.uk
Get access

Abstract

BaCo1/3Nb2/3O3 ceramics, with a high density and a similar, high degree of 1:2 B-site cation ordering, exhibit very different quality factors, Q. The ceramics exhibit p-type behavior with higher conductivity and lower Q for samples processed in O2 as compared with those processed in air. It is proposed that unavoidable Co loss during high-temperature ceramic processing leads to p-type doping that must be compensated by oxygen vacancies to impede hole formation. The composition exhibiting only intrinsic conduction and optimized Q is not achieved with processing in atmospheric oxygen due to filling of oxygen vacancies and hole formation during cooling.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Reaney, I.M., Iddles, D.Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063 (2006)CrossRefGoogle Scholar
2.Gurevich, V.L., Tagantsev, A.K.Intrinsic dielectric loss in crystals. Adv. Phys. 40, 719 (1991)CrossRefGoogle Scholar
3.Templeton, A., Wang, X.R., Penn, S.J., Webb, S.J., Cohen, L.F., Alford, N.M.Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc. 83, 95 (2000)CrossRefGoogle Scholar
4.Pullar, R.C., Penn, S.J., Wang, X., Reaney, I.M., Alford, N.M.Dielectric loss caused by oxygen vacancies in titania ceramics. J. Eur. Ceram. Soc. 29, 419 (2009)CrossRefGoogle Scholar
5.Kim, D.W., Kim, B.K., Je, H.J., Park, J.G., Kim, J.R., Hong, K.S.Degradation mechanism of dielectric loss in barium niobate under a reducing atmosphere. J. Am. Ceram. Soc. 89, 3302 (2006)CrossRefGoogle Scholar
6.Ichinose, N., Shimada, T.Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg,Zn]1/3Ta2/3)O3 systems. J. Eur. Ceram. Soc. 26, 1755 (2006)CrossRefGoogle Scholar
7.Iddles, D.M., Bell, A.J., Moulson, A.J.Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2–TiO2–SnO2 ceramics. J. Mater. Sci. 27, 6303 (1992)CrossRefGoogle Scholar
8.Penn, S.J., Alford, N.M., Templeton, A., Wang, X.R., Xu, M.S., Reece, M., Schrapel, K.Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885 (1997)CrossRefGoogle Scholar
9.Breeze, J.D., Perkins, J.M., McComb, D.W., Alford, N.M.Do grain boundaries affect microwave dielectric loss in oxides? J. Am. Ceram. Soc. 92, 671 (2009)CrossRefGoogle Scholar
10.Kawashima, S., Nishida, M., Ueda, I., Ouchi, H.Ba(Zn1/3Ta2/3)O3 ceramics with low-dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 66, 421 (1983)CrossRefGoogle Scholar
11.Wu, H., Davies, P.K.Influence of non-stoichiometry on the structure and properties of Ba(Zn1/3Nb2/3)O3 microwave dielectrics: I. Substitution of Ba3W2O9. J. Am. Ceram. Soc. 89, 2239 (2006)CrossRefGoogle Scholar
12.Tamura, H., Konoike, T., Sakabe, Y., Wakino, K.Improved high-Q dielectric resonator with complex perovskite structure. J. Am. Ceram. Soc. 67, C59 (1984)CrossRefGoogle Scholar
13.Kim, J.S., Kim, J.W., Cheon, C.I., Kim, Y.S., Nahm, S., Byun, J.D.Effect of chemical element doping and sintering atmosphere on the microwave dielectric properties of barium zinc tantalates. J. Eur. Ceram. Soc. 21, 2599 (2001)CrossRefGoogle Scholar
14.Yang, J.I., Nahm, S., Choi, C.H., Lee, H.J., Kim, J.C., Park, H.M.Effect of Ga2O3 on microstructure and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 ceramics. Jpn. J. Appl. Phys., Part 1 41, 702 (2002)CrossRefGoogle Scholar
15.Yang, J.I., Nahm, S., Choi, C.H., Lee, H.J., Park, H.M.Microstructure and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 ceramics with ZrO2 addition. J. Am. Ceram. Soc. 85, 165 (2002)CrossRefGoogle Scholar
16.Kim, M.H., Kim, B.J., Nahm, S., Lee, W.S., Yoo, M.J., Kang, N.K., Lee, H.J., Kim, Y.S., Ryou, S.Y.Microstructure and microwave dielectric properties of SnO2-added Ba(Zn1/3Ta2/3)O3 ceramics. Jpn. J. Appl. Phys., Part 1 43, 4259 (2004)CrossRefGoogle Scholar
17.Smyth, D.M.The Defect Chemistry of Metal Oxides (Oxford University Press, New York 2000)Google Scholar
18.Irvine, J.T.S., Sinclair, D.C., West, A.R.Electroceramics: Characterization by impedance spectroscopy. Adv. Mater. 2, 132 (1990)CrossRefGoogle Scholar
19.You, C.C., Huang, C.L., Wei, C.C., Huang, J.W.Improved high- Q dielectric resonator sintered at low firing temperature. Jpn. J. Appl. Phys., Part 1 34, 1911 (1995)CrossRefGoogle Scholar
20.Ahn, C.W., Nahm, S., Lim, Y.S., Choi, W., Park, H.M., Lee, H.J.Microstructure and microwave dielectric properties of Ba(Co1/3 Nb2/3)O3 ceramics. Jpn. J. Appl. Phys., Part 1 41, 5277 (2002)CrossRefGoogle Scholar
21.Yin, J., Zou, Z.G., Ye, J.H.A novel series of the new visible-light-driven photocatalysts MCo1/3Nb2/3O3 (M = Ca, Sr, and Ba) with special electronic structures. J. Phys. Chem. B 107, 4936 (2003)CrossRefGoogle Scholar
22.Constant, K.P., Mason, T.O., Rothman, S.J., Routbort, J.L.Non-stoichiometry, electrical properties, and cation diffusion in highly non-stoichiometric Co1–xO. 1. Experimental. J. Phys. Chem. Solids 53, 405 (1992)CrossRefGoogle Scholar
23.Azough, F., Leach, C., Freer, R.Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Co1/3Nb2/3) O3 ceramics. J. Eur. Ceram. Soc. 26, 2877 (2006)CrossRefGoogle Scholar
24.Endo, K., Fujimoto, K., Murakawa, K.Dielectric properties of ceramics in Ba (Co1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 solid solution. J. Am. Ceram. Soc. 70, C215 (1987)CrossRefGoogle Scholar
25.Azough, F., Leach, C., Freer, R.Effect of V2O5 on the sintering behaviour, cation order and properties of Ba3Co0.7Zn0.3Nb2O9 ceramics. J. Eur. Ceram. Soc. 25, 2839 (2005)CrossRefGoogle Scholar