Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T09:15:44.226Z Has data issue: false hasContentIssue false

Nymphaeaceae: a basal angiosperm family (ANITA grade) with a fully developed embryo

Published online by Cambridge University Press:  01 December 2007

Carol C. Baskin*
Affiliation:
Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA
Jerry M. Baskin
Affiliation:
Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
*
*Correspondence Fax: +1 859 257 1717 Email: ccbask0@uky.edu

Abstract

Rudimentary, broad and small linear embryos occur among members of the most primitive (basal) extant angiosperms, collectively called the ANITA grade (i.e. Amborella, Nymphaeales and Austrobaileyales). Amborella (rudimentary) and Austrobaileyales (rudimentary in Austrobaileyaceae, Illiciaceae and Schisandraceae and small linear in Trimeniaceae) have kinds of embryos that are known to be underdeveloped; consequently, they must grow inside the seed prior to radicle emergence (germination). On the other hand, it is not known if broad embryos need to grow before radicles can emerge, and whether they are underdeveloped or fully developed. Thus, we addressed the question: ‘Is the broad embryo of Nymphaeales also underdeveloped?’. Although the embryo length : seed length ratios in Nymphaea Albert Greenburg, N. capensis var. zanzibariensis and N. immutabilis were 0.311, 0.349 and 0.234, respectively, embryos did not grow prior to radicle emergence. Thus, they are fully developed at seed maturity. If Amborella and Nymphaeales are equally the most basal angiosperms, as some molecular phylogenetic studies indicate, then we must conclude that the broad and rudimentary embryos are equally primitive.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, I.W. and Swamy, B.G.L. (1948) Amborella trichopoda Baill., a new morphological type of vesselless dicotyledon. Journal of the Arnold Arboretum 29, 245254 +plates I–V.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Baskin, C.C. and Baskin, J.M. (2005) Underdeveloped embryos in dwarf seeds and implications for assignment to dormancy class. Seed Science Research 15, 357360.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (2006) International Water Garden Society research report: Germinating seeds of Nymphaea. Water Garden Journal 21, (1), 56.Google Scholar
Baskin, C.C. and Baskin, J.M. (2007) A revision of Martin's seed classification system, with particular reference to his dwarf-seed type. Seed Science Research 17, 1120.CrossRefGoogle Scholar
Baskin, C.C., Baskin, J.M. and Yoshinaga, A. (2005) Morphophysiological dormancy in seeds of six endemic lobelioid shrubs (Campanulaceae) from the montane zone in Hawaii. Canadian Journal of Botany 83, 16301637.CrossRefGoogle Scholar
Baskin, J.M. and Baskin, C.C. (1984) Germination ecophysiology of the woodland herb Osmorhiza longistylis (Umbelliferae). American Journal of Botany 71, 687692.CrossRefGoogle Scholar
Baskin, J.M. and Baskin, C.C. (1985) Seed germination ecophysiology of the woodland spring geophyte Erythronium albidum. Botanical Gazette 146, 130136.CrossRefGoogle Scholar
Baskin, J.M. and Baskin, C.C. (1989) Seed germination ecophysiology of Jeffersonia diphylla, a perennial herb of mesic deciduous forests. American Journal of Botany 76, 10731080.CrossRefGoogle Scholar
Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.CrossRefGoogle Scholar
Endress, P.K. (1980) The reproductive structures and systematic position of the Austrobaileyaceae. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 101, 393433.Google Scholar
Endress, P.K. (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. International Journal of Plant Sciences 162, 11111140.CrossRefGoogle Scholar
Endress, P.K. (2004) Structure and relationships of basal relictual angiosperms. Australian Systematic Botany 17, 343366.CrossRefGoogle Scholar
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.CrossRefGoogle ScholarPubMed
Forbis, T.A., Floyd, S.K. and de Querioz, A. (2002) The evolution of embryo size in angiosperms and other seed plants: Implications for the evolution of seed dormancy. Evolution 56, 21122125.Google ScholarPubMed
Friedman, W.E. (2001) Comparative embryology of basal angiosperms. Current Opinion in Plant Biology 4, 1420.CrossRefGoogle ScholarPubMed
Friedman, W.E. (2006) Embryological evidence for developmental lability during early angiosperm evolution. Nature 441, 337340.CrossRefGoogle ScholarPubMed
Friedman, W.E. and Williams, J.H. (2003) Modularity of the angiosperm female gametophyte and its bearing on the early evolution of endosperm in flowering plants. Evolution 57, 216230.Google ScholarPubMed
Friis, E.M., Pedersen, K.R. and Crane, P.R. (2006) Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 251293.CrossRefGoogle Scholar
Grushvitzky, I.V. (1967) After-ripening of seeds of primitive tribes of angiosperms, conditions and peculiarities. pp. 329336 + 8 figures Borris, H. (Ed.) Physiologie, ökologie undbiochemie der keimung. Greifswald, Germany, Ernst-Moritz-Arndt Universität.Google Scholar
Hidayati, S.N., Baskin, J.M. and Baskin, C.C. (2000a) Dormancy-breaking and germination requirements for seeds of Diervilla lonicera (Caprifoliaceae), a species with underdeveloped linear embryos. Canadian Journal of Botany 78, 11991205.CrossRefGoogle Scholar
Hidayati, S.N., Baskin, J.M. and Baskin, C.C. (2000b) Morphophysiological dormancy in seeds of two North American and one Eurasian species of Sambucus (Caprifoliaceae) with underdeveloped spatulate embryos. American Journal of Botany 87, 16691678.CrossRefGoogle ScholarPubMed
Hidayati, S.N., Baskin, J.M. and Baskin, C.C. (2000c) Dormancy-breaking and germination requirements of seeds of four Lonicera species (Caprifoliaceae) with underdeveloped spatulate embryos. Seed Science Research 10, 459469.CrossRefGoogle Scholar
Kondo, T., Okubo, N., Miura, T., Baskin, C.C. and Baskin, J.M. (2005) Ecophysiology of seed dormancy and germination in the mesic woodland herbaceous perennial Corydalis ambigua (Fumariaceae) in Japan. Canadian Journal of Botany 83, 571578.CrossRefGoogle Scholar
Martin, A.C. (1946) The comparative internal morphology of seeds. The American Midland Naturalist 36, 513660.CrossRefGoogle Scholar
Morat, P.H. and MacKee, H.S. (1977) Quelques precisions sur le Trimenia neocaledonica Bak. F. et la famille des Trimeniacees en Nouvelle Caledonie. Adansonia 17, 205213.Google Scholar
Nikolaeva, M.G. (1969) Physiology of deep dormancy in seeds. Leningrad, Russia, Izdatel'stvo ‘Nauka’. (Translated from Russian by Z. Shapiro, National Science Foundation, Washington, DC).Google Scholar
Nikolaeva, M.G. (1999) Patterns of seed dormancy and germination as related to plant phylogeny and ecological and geographical conditions of their habitats. Russian Journal of Plant Physiology 46, 369373.Google Scholar
Qiu, Y.-L., Lee, J.H., Bernasconi-Quadroni, F., Soltis, D.E., Soltis, P.S., Zanis, M., Zimmer, E.A., Chen, Z.D., Savolainen, V. and Chase, M.W. (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402, 404407.CrossRefGoogle ScholarPubMed
Qiu, Y.-L., Dombrovska, O., Lee, J., Li, L., Whitlock, B.A., Bernasconi-Quadroni, F., Rest, J.S., Davis, C.C., Borsch, T., Hilu, K.W., Renner, S.S., Soltis, D.E., Soltis, P.S., Zanis, M.J., Cannone, J.J., Gutell, R.R., Powell, M., Savolainen, V., Chatrou, L.W. and Chase, M.W. (2005) Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes. International Journal of Plant Sciences 166 (5 Supplement), 815842.CrossRefGoogle Scholar
Qiu, Y.-L., Li, L.B., Hendry, T.A., Li, R.Q., Taylor, D.W., Issa, M.J., Ronen, A.J., Vekaria, M.L. and White, A.M. (2006) Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes. Taxon 55, 837856.CrossRefGoogle Scholar
Saunders, R.M.K. (1998) Monograph of Kadsura (Schisandraceae). Systematic Botany Monographs 54, 1106.CrossRefGoogle Scholar
Schneider, E.L., Tucker, S.C. and Williamson, P.S. (2003) Floral development in the Nymphaeales. International Journal of Plant Sciences 164 (5 Supplement), S279S292.CrossRefGoogle Scholar
Takhtajan, A. (1985), Anatomia seminum comparativa. Vol. 1, Liliopsida seu Monocotyledones. Leninopoli, ‘Nauka’ Sectio Leninopoli (in Russian).Google Scholar
Takhtajan, A. (1988) Anatomia seminum comparativa. Vol. 2, Dicotyledones. Magnoliidae, Ranunculidae. Leninopoli, ‘Nauka’ Sectio Leninopoli (in Russian).Google Scholar
Taylor, W., DeVore, M.L. and Pigg, K.B. (2006) Susiea newsalemae gen. et sp. nov. (Nymphaeaceae): Euryale-like seeds from the Late Paleocene Almont Flora, North Dakota, USA. International Journal of Plant Sciences 167, 12711278.CrossRefGoogle Scholar
Wiersema, J.H. (1987) A monograph of Nymphaea subgenus Hydrocallis (Nymphaeaceae). Systematic Botany Monographs 16, 1112.CrossRefGoogle Scholar
Williams, J.H. and Friedman, W.E. (2002) Identification of diploid endosperm in an early angiosperm lineage. Nature 415, 522525.CrossRefGoogle Scholar