Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-27T17:44:23.272Z Has data issue: false hasContentIssue false

The first record of fossil penguins from East Antarctica

Published online by Cambridge University Press:  15 November 2012

Piotr Jadwiszczak*
Affiliation:
Institute of Biology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland
Krzysztof P. Krajewski
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warszawa, Twarda 51/55, 00-818 Warszawa, Poland
Zinaida Pushina
Affiliation:
All-Russia Research Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologiya), Angliyskiy Prospekt 1, 190121 St Petersburg, Russia
Andrzej Tatur
Affiliation:
Faculty of Geology, Warsaw University, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Grzegorz Zieliński
Affiliation:
Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland

Abstract

This paper presents the first fossil penguin from East Antarctica, and the only one known south of the Antarctic Circle. It is represented by two well-preserved elements of the wing skeleton, humerus and radius, obviously assignable to the extant genus Spheniscus. They were found in the glaciomarine succession of the Fisher Bench Formation (Fisher Massif, Prince Charles Mountains, Mac. Robertson Land), which was dated using Strontium Isotope Stratigraphy to be Late Miocene in age (10.2 Ma). They are only slightly younger than the oldest remains undoubtedly attributable to this taxon. The X-ray diffraction and Fourier Transform Infrared Spectroscopy indicate diagenetic alteration of the original bone bioapatite under dominantly marine conditions. The Late Miocene was a period of ice margin retreat and marine incursion into the Lambert embayment that followed Middle Miocene cooling of the Antarctic climate. The fossils strongly suggest that variable climatic and environmental conditions in East Antarctica may have been an important factor in the evolution of penguins there during the Neogene.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta Hospitaleche, C.Reguero, M. 2010. First articulated skeleton of Palaeeudyptes gunnari from the late Eocene of Isla Marambio (Seymour Island), Antarctica. Antarctic Science, 22, 289298.CrossRefGoogle Scholar
Bertelli, S.Giannini, N.P. 2005. A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences. Cladistics, 21, 209239.CrossRefGoogle Scholar
Billups, K.Schrag, B.P. 2002. Paleotemperatures and ice volume of the past 27 myr revised with paired Mg/Ca and 18O/16Omeasurements on bentic foraminifera. Paleoceanography, 1029-2000PA000567.CrossRefGoogle Scholar
Clarke, J.A., Olivero, E.B.Puerta, P. 2003. Description of the earliest fossil penguin from South America and first Paleogene vertebrate locality of Tierra del Fuego, Argentina. American Museum Novitates, 423, 118.2.0.CO;2>CrossRefGoogle Scholar
Clarke, J.A., Ksepka, D.T., Salas-Gismondi, R., Altamirano, A.J., Shawkey, M.D., D'alba, L., Vinther, J., Devries, T.J.Baby, P. 2010. Fossil evidence for evolution of the shape and color of penguin feathers. Science, 330, 954957.CrossRefGoogle ScholarPubMed
Emslie, S.D.Correa, C.G. 2003. A new species of penguin (Spheniscidae: Spheniscus) and other birds from the late Pliocene of Chile. Proceedings of the Biological Society of Washington, 116, 308316.Google Scholar
Frakes, L.A., Francis, J.E.Syktus, J.I. 1992. Climate modes of the Phanerozoic. Cambridge: Cambridge University Press, 288 pp.CrossRefGoogle Scholar
Göhlich, U.B. 2007. The oldest fossil record of the extant penguin genus Spheniscus - a new species from the Miocene of Peru. Acta Palaeontologica Polonica, 52, 285298.Google Scholar
Hambrey, M.J.McKelvey, B.C. 1991. Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica. Sedimentology, 47, 577607.CrossRefGoogle Scholar
Howarth, R.J.McArthur, J.M. 1997. Statistics for strontium isotope stratigraphy: a robust LOWESS fit to the marine Sr-isotope curve for 0 to 206 Ma, with look-up table for derivation of numeric age. Journal of Geology, 105, 441456.CrossRefGoogle Scholar
Huertas, A.D., Iacumin, P.Longinelli, A. 1997. A stable isotope study of fossil mammal remains from Paglicci Cave, southern Italy, 13 to 33 ka bp: palaeoclimatological considerations. Chemical Geology, 141, 211223.CrossRefGoogle Scholar
Jadwiszczak, P. 2006. Eocene penguins of Seymour Island, Antarctica: taxonomy. Polish Polar Research, 27, 362.Google Scholar
Jadwiszczak, P. 2009. Penguin past: the current state of knowledge. Polish Polar Research, 30, 328.Google Scholar
Jones, C.M. 2000. The first record of a fossil bird from East Antarctica. Antarctic Research Series, 76, 359364.CrossRefGoogle Scholar
Ksepka, D.T.Thomas, D.B. 2012. Multiple Cenozoic invasions of Africa by penguins (Aves, Sphenisciformes). Proceedings of the Royal Society, B279, 10271032.Google Scholar
Ksepka, D.T., Bertelli, S.Giannini, N.P. 2006. The phylogeny of the living and fossil Sphenisciformes (penguins). Cladistics, 22, 412441.CrossRefGoogle Scholar
Layba, A.A.Pushina, Z.V. 1997. Cenozoic glacial-marine sediments from the Fisher Massif (Prince Charles Mountains). In Ricci,C.A.,ed. The Antarctic region: geological evolution and processes. Siena: Terra Antarctica, 977984.Google Scholar
Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hedenäse, L., Hemming, S.R., Johnson, J.V., Leng, M.J., Machlusf, M.L., Newtoni, A.E., Lan Raine, J., Willenbring, J.K., Williams, M.Wolfe, A.P. 2008. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 105, 10 67610 680.CrossRefGoogle ScholarPubMed
McArthur, J.M., Howarth, R.J.Bailey, T.R. 2001. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, 109, 155170.CrossRefGoogle Scholar
McKelvey, B.C., Hambrey, M.J., Harwood, D.M., Mabin, M.C.G., Webb, P.-N.Whitehead, J.M. 2001. The Pagodroma Group - a Cenozoic record of the East Antarctic ice sheet in the northern Prince Charles Mountains. Antarctic Science, 13, 455468.CrossRefGoogle Scholar
Munro, L.E., Longstaffe, F.J.White, C.D. 2007. Burning and boiling of modern deer bone: effects on crystallinity and oxygen isotope composition of biogenic phosphate. Palaeogeography, Palaeoecology, Palaeoclimatology, 249, 90102.CrossRefGoogle Scholar
Myrcha, A., Jadwiszczak, P., Tambussi, C.P., Noriega, J.I., Gaździcki, A., Tatur, A.Del Valle, R.A. 2002. Taxonomic revision of Eocene Antarctic penguins based on tarsometatarsal morphology. Polish Polar Research, 23, 546.Google Scholar
O'Brien, P.E., Cooper, A.K.Richter, C.et al. 2001. Proceedings of the Ocean Drilling Program. Initial Reports, 188. College Station, TX: Ocean Drilling Program, 10.2973/odp.proc.ir.188.2001.Google Scholar
Panda, R.N., Hsieh, M.F., Chung, R.J.Chin, T.S. 2003. FTIR, XRD and solid state NMR investigation of carbonate containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. Journal of Physics and Chemistry of Solids, 64, 193199.CrossRefGoogle Scholar
Person, A., Bocherens, H., Mariotti, A.Renard, M. 1996. Diagenetic evolution and experimental heating of bone phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 135149.CrossRefGoogle Scholar
Person, A., Bocherens, H., Saliège, J-F., Paris, F., Zeitoun, V.Gérard, M. 1995. Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. Journal of Archaeological Science, 22, 211221.CrossRefGoogle Scholar
Pushina, Z.V., Gogorev, R.M., Birjukov, A.S., Egorov, M.S.Gola, M. 2011. Biostratigraphy of Neogene sediments from the Fisher Massif (Prince Charles Mountains) based on diatom data. Russian Earth Science Research in Antarctica, Collection of Papers, 3, 7688.Google Scholar
Shevenell, A.E., Kennett, J.P.Lea, D.W. 2004. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science, 305, 17661770.CrossRefGoogle ScholarPubMed
Slack, K.E., Jones, C.M., Ando, T., Harrison, G.L., Fordyce, R.E., Arnason, U.Penny, D. 2006. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Molecular Biology and Evolution, 23, 11441155.CrossRefGoogle ScholarPubMed
Snedden, J.W.Liu, C. 2010. A compilation of Phanerozoic sea level change, coastal onlaps and recommended sequence designations. American Association of Petroleum Geologists. Search and Discovery, article no. 40594. (http://www.searchanddiscovery.com).Google Scholar
Stephan, B. 1979. Vergleichende Osteologie der Pinguine. Mitteilungen aus dem Zoologischen Museum Berlin, 55 (Supplement Annalen für Ornithologie 3), 398.Google Scholar
Stucchi, M. 2007. Los pingüinos de la formación Pisco (Neógeno), Perú. Cuadernos del Museo Geominero, 8, 367373.Google Scholar
Surovell, T.A.Stiner, M.C. 2001. Standardizing infrared measures of bone mineral crystallinity: an experimental approach. Journal of Archaeological Science, 28, 633642.CrossRefGoogle Scholar
Thomas, D.B., Ksepka, D.T.Fordyce, R.E. 2010. Penguin heat-retention structures evolved in a greenhouse Earth. Biology Letters, 7, 461464.CrossRefGoogle Scholar
Whitehead, J.M., Harwood, D.M.McMinn, A. 2003. Ice-distal Upper Miocene marine strata from inland Antarctica. Sedimentology, 50, 531552.CrossRefGoogle Scholar
Whitehead, J.M., Quilty, P.G., McKelvey, B.C.O'Brien, P.E. 2006b. A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben-Prydz Bay region, East Antarctica. Antarctic Science, 16, 8399.CrossRefGoogle Scholar
Whitehead, J.M., Harwood, D.M., McKelvey, B.C., Hambrey, M.J.McMinn, A. 2004. Diatom biostratigraphy of the Cenozoic fjordal Pagodroma Group, northern Prince Charles Mountains, East Antarctica. Australian Journal of Earth Sciences, 51, 521547.CrossRefGoogle Scholar
Whitehead, J.M., Ehrmann, W., Harwood, D.M., Hillebrand, C.D., Quilty, P.G., Hart, C., Taviani, M., Thorn, V.McMinn, A. 2006a. Late Miocene paleoenvironment of the Lambert Graben embayment, East Antarctica, evident from: mollusc paleontology, sedimentology and geochemistry. Global and Planetary Change, 50, 127147.CrossRefGoogle Scholar
Woehler, E.J. 1997. Seabird abundance, biomass and prey consumption within Prydz Bay, Antarctica, 1980/1981–1992/1993. Polar Biology, 17, 371383.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E.Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686693.CrossRefGoogle ScholarPubMed