Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T17:34:25.124Z Has data issue: false hasContentIssue false

The Influence of Evolving Dark Energy on Cosmology

Published online by Cambridge University Press:  05 March 2013

Luke Barnes
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
Matthew J. Francis
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
Geraint F. Lewis*
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
Eric V. Linder
Affiliation:
Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
*
BCorresponding author. Email: gfl@physics.usyd.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observational evidence indicating that the expansion of the universe is accelerating has surprised cosmologists in recent years. Cosmological models have sought to explain this acceleration by incorporating ‘dark energy’, of which the traditional cosmological constant is just one possible candidate. Several cosmological models involving an evolving equation of state of the dark energy have been proposed, as well as possible energy exchange to other components, such as dark matter. This paper summarizes the forms of the most prominent models and discusses their implications for cosmology and astrophysics. Finally, this paper examines the current and future observational constraints on the nature of dark energy.

Type
Review Article
Copyright
Copyright © Astronomical Society of Australia 2005

References

Abazajian, K., et al. 2003, AJ, 126, 2081 Google Scholar
Aldering, G., et al. 2004, astro-ph/0405232Google Scholar
Alley, C. O., Aschan, P. K., & Yilmaz, H. gr-qc/9506082Google Scholar
Amendola, L., Quercellini, C., & Giallongo, E. 2005, MNRAS, 357, 429 Google Scholar
Barenboim, G., & Lykken, J. 2005, astro-ph/0504090Google Scholar
Besprosvany, J. 2005, astro-ph/0502439Google Scholar
Cai, R., & Wang, A. 2005, JCAP, 3, 2 CrossRefGoogle Scholar
Caldwell, R. R., Kamionkowski, M., & Weinberg, N. N. 2003, PhRvL, 91, 071301Google Scholar
Carroll, S. M. 2001, LRR, 4, 1 Google Scholar
Carroll, S. M., Duvvuri, V., Trodden, M., & Turner, M. S. 2004, PhRvD, 70, 043528Google Scholar
Carroll, S. M., de Felice, A., Duvvuri, V., Easson, D. A., Trodden, M., & Turner, M. S. 2005, PhRvD, 71, 063513Google Scholar
Chimento, L. P., Jakubi, A. S., & Pavón, D. 2000, PhRvD, 62, 063508Google Scholar
Chimento, L. P., Jakubi, A. S., & Zuccalá, N. A. 2001, PhRvD, 63, 103508Google Scholar
Chimento, L. P., Jakubi, A. S., Pavón, D., & Zimdahl, W. 2003, PhRvD, 67, 083513Google Scholar
Corasaniti, P. S., Bassett, B. A., Ungarelli, C., & Copeland, E. J. 2003, PhRvL, 90, 091303Google Scholar
Csaki, C., Kaloper, N., & Terning, J. 2004, astro-ph/0409596CrossRefGoogle Scholar
Einstein, A., & Grossmann, M. 1913, ZaMP, 62, 225 Google Scholar
Freedman, W. L., et al. 2001, ApJ, 553, 47 Google Scholar
Gromov, A., Baryshev, Y., & Teerikorpi, P. 2004, A&A, 415, 813 Google Scholar
Harrison, E. R. 1995, ApJ, 446, 63 Google Scholar
Hawkins, E., et al. 2003, MNRAS, 346, 78 Google Scholar
Hogg, D. W. 1999, astro-ph/9905116Google Scholar
Knop, R. A., et al. 2003, ApJ, 598, 102 CrossRefGoogle Scholar
Linder, E. V. 1988a, A&A, 206, 175 Google Scholar
Linder, E. V. 1988b, A&A, 206, 190 Google Scholar
Linder, E. V. 1997, First Principles of Cosmology (London: Addison-Wesley)Google Scholar
Linder, E. V. 2003, PhRvL, 90, 091301Google Scholar
Linder, E. V. 2004, PhRvD, 70, 061302Google Scholar
Linder, E. V. 2005, PhRvD, 72, 043529Google Scholar
Linder, E. V., & Huterer, D. 2005, PhRvD, 72, 043509Google Scholar
Linder, E. V., & Jenkins, A. 2003, MNRAS, 346, 573 Google Scholar
Linder, E. V., & Miquel, R. 2004, PhRvD, 70, 1235164Google Scholar
Mensky, M. B. 2004, PhLA, 328, 261 Google Scholar
Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, Gravitation (San Fransisco, CA: Freeman)Google Scholar
Misner, C. W. 1999, NCimB, 114, 1079 Google Scholar
Olivares, G., Atrio-Barandela, F., & Pavón, D. 2005, PhRvD, 71, 063523Google Scholar
Percival, W. J., et al. 2002, MNRAS, 337, 1068 Google Scholar
Ratra, B., & Peebles, P. J. E. 1988, PhRvD, 37, 3406 Google Scholar
Riess, A. G., et al. 2004, ApJ, 607, 665 Google Scholar
Spergel, D. N., et al. 2003, ApJS, 148, 175 CrossRefGoogle Scholar
Steinhardt, P. J. 2003, RSPTA, 361, 2497 CrossRefGoogle Scholar
Steinhardt, P. J., & Caldwell, R. R. 1998, ASP Conf. Ser. 151: Cosmic Microwave Background and Large Scale Structure of the Universe, 151, 13 Google Scholar
Szydlowski, M. 2005, astro-ph/0502034Google Scholar
Tauber, J. A. 2004, AdSpR, 34, 4912 Google Scholar
Turner, M. S. 1985, PhRvD, 31, 1212 Google Scholar
Wang, P., & Meng, X. 2004, astro-ph/0408495Google Scholar
Wang, Y., & Mukherjee, P. 2004, ApJ, 606, 654 Google Scholar
Weinberg, S. 1989, RvMP, 61, 1 Google Scholar
Weinberg, S. 1972, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (New York, NY: Wiley)Google Scholar
Yilmaz, H. 1982, NCimL, 107, 8 Google Scholar
Zhang, X. 2005, astro-ph/0503075Google Scholar
Zimdahl, W., Pavón, D., & Chimento, L. P. 2001, PhLB, 521, 133 Google Scholar
Zimdahl, W. 2005, gr-qc/0505056Google Scholar