Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T01:12:21.155Z Has data issue: false hasContentIssue false

A randomized double-blind controlled calcium supplementation trial, and bone height acquisition in children

Published online by Cambridge University Press:  09 March 2007

Warren T. K. Lee
Affiliation:
Department of Paediatrics, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
Sophie S. F. Leung
Affiliation:
Department of Paediatrics, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
Doram. Y. Leung
Affiliation:
Department of Paediatrics, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
Heidi S. Y. Tsang
Affiliation:
Department of Paediatrics, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
Joseph Lau
Affiliation:
Centre for Clinical Trials and Epidemiology Research, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
Jack C. Y. Cheng
Affiliation:
Department of Orthopaedics, and Traumatology. Faculty of Medicine, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is limited information relating Ca intake to bone and height acquisition among Oriental children who consume little or even no milk. The present controlled study investigated the acquisition of bone mass and height of Chinese children with an initial Ca intake of approximately 567 mg/d who were supplemented to about 800 mg/d. Eighty-four 7-year-old Hong Kong Chinese children underwent an 18-month randomized, double-blind, controlled Ca-supplementation trial. The children were randomized to receive either 300 mg elemental Ca or a placebo tablet daily. Bone mass of the distal one-third radius was measured by single-photon absorptiometry, lumbar spine and femoral neck were determined using dual-energy X-ray absorptiometry. Measurements were repeated 6-monthly. Baseline serum 25-hydroxycholecalciferol concentration and physical activity were also assessed. Baseline Ca intakes of the study group and controls were respectively 571 (SD 326) and 563 (SD 337) mg/d. There were no significant differences in baseline serum 25-hydroxycholecalciferol concentration (P = 0·71) and physical activity (P = 0·36) between the study and control groups. After 18 months the study group had significantly greater increases in lumbar-spinal bone mineral content (20·9 v. 16. 34%; P = 0·035), lumbar-spinal area (11·16 v. 8·71%; P = 0middot;049), and a moderately greater increment in areal bone mineral density of the radius (7·74 0·600%; P = 0.081) when compared with the controls. The results confirm a positive effect of Ca on bone mass of the spine and radius but no effects on femoral-neck and height increase. A longer trial is warranted to confirm a positive Ca effect during childhood that may modify future peak bone mass.

Type
Calcium intake and bone mass in children
Copyright
Copyright © The Nutrition Society 1995

References

Bell, N. H., Shary, J., Stevens, J., Garza, M., Gordon, L. & Edwards, J. (1991) Demonstration that bone mass is greater in black than in white children. Journal of Bone and Mineral Research 6, 719723.CrossRefGoogle ScholarPubMed
Bouchard, C., Tremblay, A., Leblanc, C., Lortie, G., Savard, R. & Theriault, G. (1983) A method to assess energy expenditure in children and adults. American Journal of Clinical Nutrition 37, 461467.CrossRefGoogle ScholarPubMed
Bureau of Statistics (1970) Japan Statistical Year Book. Tokyo: Office of Prime Minister, Japan.Google Scholar
Cameron, J. R., Mazess, R. B. & Sorenson, J. R. (1968) Precision and accuracy of bone determination by direct photon absorptiometry. Investigative Radiology 3, 1120.CrossRefGoogle ScholarPubMed
Cameron, J. R. & Sorenson, J. R. (1963) Measurement of bone mineral in vivo: an improved method. Science 142, 230232.CrossRefGoogle ScholarPubMed
Chan, G. M. (1991) Dietary calcium and bone mineral status of children and adolescents. American Journal of Diseases of Children 145, 631634.Google ScholarPubMed
Davee, A. M., Rosen, C. J. & Adler, R. (1992) Exercise patterns and trabecular bone density in college women. Journal of Bone and Mineral Research 5, 245250.CrossRefGoogle Scholar
DePriester, J. A., Cole, T. J. & Bishop, N. J. (1991) Bone growth and mineralisation in children aged 4 to 10 years. Bone and Mineral 12, 5765.CrossRefGoogle ScholarPubMed
Draper, N. R. & Smith, H. (1981) Applied Regression Analysis, 2nd ed., pp. 9495. New York: John Wiley & Sons Inc.Google Scholar
Durnin, J. V. G. A. (1990) Methods to assess physical activity and the energy expended for it by infants and children. In Activity, Energy Expenditure and Energy Requirements of Infants and Children, pp. 4555 [Schurch, B. and Scrimshaw, S.N., editors]. Lausanne: International Dietary Energy Consultancy Group.Google Scholar
Fehily, A. M., Coles, R. J., Evans, W. D. & Elwood, P. C. (1992) Factors affecting bone density in young adults. American Journal of Clinical Nutrition 56, 579586.CrossRefGoogle ScholarPubMed
Garn, S. M., Pao, E. M. & Rihl, M. E. (1964) Compact bone in Chinese and Japanese. Science 143, 14391440.CrossRefGoogle ScholarPubMed
Genant, H. K., Block, J. E., Steiger, P., Glueer, C. C, Ettinger, B. & Harris, S. T. (1989) Appropriate use of bone densitometry. Radiology 170, 817822.CrossRefGoogle ScholarPubMed
German Society of Nutrition (1981) Recommendations on Nutrient Intake. 5th ed. Frankfurt: German Society of Nutrition.Google Scholar
Gilsanz, V., Gibbens, D. T., Roe, T. F., Carlson, M., Senac, M. O., Boechat, M. I., Huang, H. K., Schulz, E. E., Libanati, C. R. & Cann, C. C. (1988) Vertebral bone density in children: effect of puberty. Radiology 166, 847850.CrossRefGoogle ScholarPubMed
Gilsanz, V., Roe, T. F., Mora, S., Costin, G. & Goodman, W. G. (1991) Changes in vertebral bone density in black girls and white girls during childhood and puberty. New England Journal of Medicine 325, 15971600.CrossRefGoogle Scholar
Glastre, C, Braillon, P., David, L., Cochat, P., Meunier, P. J. & Delmas, P. D. (1990) Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. Journal of Clinical Endocrinology and Metabolism 70, 13301333.CrossRefGoogle ScholarPubMed
Grimston, S. K., Willows, N. D. & Hanley, D. A. (1993) Mechanical loading regime and its relationship to bone mineral density in children. Medicine and Science in Sports and Exercise 25, 12031210.CrossRefGoogle ScholarPubMed
Grindulis, H., Scott, P. H. & Belton, N. R. (1986) Combined deficiency of iron and vitamin D in Asian toddlers. Archives of Disease in Childhood 61, 843848.CrossRefGoogle ScholarPubMed
Ho, C. P., Kim, R. W., Schaffler, M. B. & Sartoris, D. J. (1990) Accuracy of dual-energy radiographic absorptiometry of the lumber spine: cadaver study. Radiology 176, 171173.CrossRefGoogle Scholar
Hu, J. F., Zhao, X. H., Jia, J. B., Parpia, B. & Campbell, T. C. (1993) Dietary calcium and bone density among middle-aged and elderly women in China. American Journal of Clinical Nutrition 58, 219227.CrossRefGoogle ScholarPubMed
Institute of Nutrition and Food Hygiene (1991) Food Composition Table. Chinese Academy of Preventive Medicine. Beijing: Chinese People's Health Publishing Co.Google Scholar
Johnston, C. C., Miller, J. Z., Slemenda, C. W., Reister, T. K., Hui, S., Christian, J. C. & Peacock, M. (1992) Calcium supplementation and increases in bone mineral density in children. New England Journal of Medicine 327, 8287.CrossRefGoogle ScholarPubMed
Katzman, D. K., Bachrach, L. K., Carter, D. R. & Marcus, R. (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. Journal of Clinical Endocrinology and Metabolism 73, 13321339.CrossRefGoogle ScholarPubMed
Kirschner, B. S., Voinchet, O. & Rosenberg, I. H. (1978) Growth retardation in inflammatory bowel disease. Gastroenterology 75, 504511.CrossRefGoogle ScholarPubMed
Kleinbaum, D. G., Kupper, L. L. & Muller, K. F. (1987) Applied Regression Analysis and Other Multivariables Method, 2nd ed., pp. 200205. Boston: PWS-Kent Publishing Co.Google Scholar
Lee, W. T. K. (1993) Requirements of calcium: are there ethnic differences? Asia Pacific Journal of Clinical Nutrition 2, 183190.Google ScholarPubMed
Lee, W. T. K., Leung, S. S. F., Fairweather-Tait, S. J., Leung, D. M. Y., Tsang, H. S. Y., Eagles, J., Fox, I., Wang, S. H., Xu, Y. C, Zeng, W. P., Lau, J. & Masarei, J. R. L. (1994 a) True fractional calcium absorption in Chinese children measured with stable isotopes (42Ca and 44Ca). British Journal of Nutrition 72, 883897.CrossRefGoogle Scholar
Lee, W. T. K., Leung, S. S. F., Lui, S. S. H. & Lau, J. (1993 a) Relationship between long-term calcium intake and bone mineral content of children aged from birth to 5 years. British Journal of Nutrition 70, 235248.CrossRefGoogle ScholarPubMed
Lee, W. T. K., Leung, S. S. F., Ng, M. Y., Wang, S. F., Xu, Y. C, Zeng, W. P. & Lau, J. (1993 b) Bone mineral content of two populations of Chinese children with different calcium intakes. Bone and Mineral 23, 195206.CrossRefGoogle ScholarPubMed
Lee, W. T. K., Leung, S. S. F., Wang, S. H., Xu, Y. C, Zeng, W. P., Lau, J., Oppenheimer, S. J. & Cheng, J. (1994 b) Double-blind controlled calcium supplementation and bone mineral accretion in children accustomed to low calcium diet. American Journal of Clinical Nutrition 60, 744750.CrossRefGoogle ScholarPubMed
Leighton, G. & Clark, M. L. (1929) Milk consumption and growth of school-children; second preliminary report on tests to Scottish Board of Health. Lancet i, 4043.CrossRefGoogle Scholar
Leung, S. S. F. & Lui, S. (1989) Chinese infants are smaller than Caucasian: nutritional or genetic? Pediatric Reviews and Communications 3, 309316.Google Scholar
Leung, S. S. F., Wu, M. Y., Yeung, W. M., Wong, C. K. & Pang, C. P. (1993) Prevalence of nutritional rickets in infants of Quangzhou: accuracy of diagnosing rickets basing on clinical features alone. Hong Kong Journal of Paediatrics 9, 229232.Google Scholar
Lloyd, T., Andon, M. B., Rollings, N., Martel, J. K., Landis, R., Demers, L. M., Eggli, D. F., Kieselhorst, K. & Kulin, H. E. (1993) Calcium supplementation and bone mineral density in adolescent girls. Journal of the American Medical Association 270, 841844.CrossRefGoogle ScholarPubMed
Lloyd, T., Rollings, N., Andon, M. B., Demers, L. M., Eggli, D. F., Kieselhorst, K., Kulin, H., Landis, J. R, Martel, J. K., Orr, G. & Smith, P. (1992) Determinants of bone density in young women. I. Relationships among pubertal development, total body bone mass, and total body bone density in premenarchal females. Journal of Clinical Endocrinology and Metabolism 75, 383387.Google Scholar
McCormick, D. P., Ponder, S. W., Fawcett, D. & Palmer, J. L. (1991) Spinal bone mineral density in 335 normal and obese children and adolescents: evidence for ethnic and sex differences. Journal of Bone and Mineral Research 6, 507513.CrossRefGoogle ScholarPubMed
McParland, B. E., Goulding, A. & Campbell, A. J. (1989) Dietary salt effects of biochemical markers of resorption and formation of bone in elderly women. British Medical Journal 299, 834845.CrossRefGoogle ScholarPubMed
Matkovic, V. (1992) Calcium and peak bone mass. Journal of Internal Medicine 231, 151160.CrossRefGoogle ScholarPubMed
Matkovic, V. & Illicit, J. Z. (1993) Calcium requirements for growth: are current recommendations adequate? Nutrition Reviews 51, 171180.CrossRefGoogle ScholarPubMed
Matkovic, V., Kostial, K., Simonovic, I., Buzina, R., Brodarec, A. & Nordin, B. E. C. (1979) Bone status and fracture rates in two regions of Yugoslavia. American Journal of Clinical Nutrition 32, 540549.CrossRefGoogle ScholarPubMed
Mazess, R. B. & Barden, H. S. (1991) Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking and birth-control pills. American Journal of Clinical Nutrition 53, 132142CrossRefGoogle ScholarPubMed
Mazess, R. B. & Cameron, J. R. (1974) Bone mineral content in normal US whites. In International Conference on Bone Mineral Measurement, pp. 228238 [Mazess, R. B., editor]. Washington DC: US Government Printing Office.Google Scholar
Metz, J. A., Anderson, J. J. B. & Gallagher, P. N. (1993) Intakes of calcium, phosphorus, and protein, and physical activity levels are related to radial bone mass in young adult women. American Journal of Clinical Nutrition 58, 537542.CrossRefGoogle ScholarPubMed
Morrison, N. A., Qi, J. C, Tokita, A., Kelly, P. J., Crofts, L., Nguyen, T. V., Sambrook, P. N. & Eisman, J. A. (1994) Prediction of bone density from vitamin D receptor alleles. Science 367, 284287.Google ScholarPubMed
National Research Council (1989) Food and Nutrition Board: Recommended Dietary Allowances, 10th ed. Washington DC: National Academy Press.Google Scholar
Orwoll, E. S. (1991) The effects of dietary protein insufficiency and excess on skeletal health. In Nutritional Aspects of Osteoporosis, pp. 355370 [Burckhardt, P. and Heaney, R.P., editors]. New York: Raven Press.Google Scholar
Ott, S. M. (1991) Methods of determining bone mass. Journal of Bone and Mineral Research 6, Suppl. 2, S71S76.CrossRefGoogle ScholarPubMed
Paganini-Hill, A., Chao, A., Ross, R. K. & Henderson, B. E. (1991) Exercise and other factors in the prevention of hip fracture: the leisure world study. Epidemiology 2, 1625.CrossRefGoogle ScholarPubMed
Paul, A. A. & Southgate, D. A. T. (1987) McCance and Widdowson's The Composition of Foods. 4th ed. London: H.M. Stationery Office.Google Scholar
Pennington, J. A. T. (1989) Bowes and Church's Food Values of Portions Commonly Used, 15th ed. New York: Harper & Row.Google Scholar
Pocock, N. A., Eisman, J. A., Hopper, J. L., Yeates, M. G., Sambrook, P.N. & Eberi, S. (1987) Genetic determinants of bone mass in adults. Journal of Clinical Investigation 80, 706710.CrossRefGoogle ScholarPubMed
Prentice, A., Laskey, M. A., Shaw, J., Cole, T. J. & Fraser, D. R. (1990) Bone mineral content of Gambian and British children aged 0–36 months. Bone and Mineral 10, 211224.CrossRefGoogle ScholarPubMed
Sabto, J., Powell, M. J., Breidahl, M. J. & Gurr, F. M. (1984) Influence of urinary sodium on calcium excretion in normal individuals. Medical Journal of Australia 140, 354356.CrossRefGoogle ScholarPubMed
Saris, W. H. M. (1985) The assessment and evaluation of daily physical activity in children. A review. Acta Paediatrica Scandinavica 318, Suppl.3748.CrossRefGoogle ScholarPubMed
Sartoris, D. J. & Resnick, D. (1989) Dual-energy radiographic absorptiometry for bone densitometry: current status and perspective. American Journal of Roentgenology 152, 241246.CrossRefGoogle ScholarPubMed
Slemenda, C. W. (1993) Genetic and environmental influences affecting skeletal growth during puberty. In Proceedings of Fourth International Symposium on Osteoporosis, pp. 212214 [Christiansen, C. and Riis, B., editors]. Rodovre, Denmark: Aalborg.Google Scholar
Slemenda, C. W., Christian, J. C., Williams, C. J., Norton, J. A. & Johnston, C. C. Jr (1991 a) Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. Journal of Bone and Mineral Research 6, 561567.CrossRefGoogle ScholarPubMed
Slemenda, C. W., Miller, J. Z., Hui, S. L., Reister, T. K. & Johnston, C. C. Jr (1991 b) Role of physical activity in the development of skeletal mass in children. Journal of Bone and Mineral Research 6, 12271233.CrossRefGoogle ScholarPubMed
Sorenson, J. A. & Cameron, J. R. (1967) A reliable in vivo measurement of bone mineral content. Journal of Bone and Joint Surgery 49A, 481497.CrossRefGoogle ScholarPubMed
Southard, R. N., Morris, J. D., Mahan, J. D., Hayes, J. R., Torch, M. A., Sommer, A. & Zipf, W. B. (1991) Bone mass in healthy children: measurement with quantitative DXA. Radiology 179, 735738.CrossRefGoogle ScholarPubMed
Turner, T. G., Gilchrist, N. L., Ayling, E. M., Hassall, A. J., Hooke, E. A. & Dadler, W. A. (1992) Factors affecting bone mineral density in high school girls. New Zealand Medical Journal 105, 9596.Google ScholarPubMed
U.S. Department of Health, Education and Welfare (1972) Food Composition Table for Use in South East Asia. Bethesda, Maryland: U.S. Department of Health, Education and Welfare.Google Scholar
Watt, B. K. & Merrill, H. L. (1983) Composition of Foods. Agriculture Handbook no. 8. Washington DC: U.S. Department of Agriculture.Google Scholar
Woo, J., Swaminathan, R., Pang, C. P., Mak, Y. T. & MacDonald, D. (1990) A comparison of biochemical indices of bone turnover in elderly institutionalised and free-living subjects. Bone and Mineral 8, 3138.CrossRefGoogle ScholarPubMed