Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T05:09:38.869Z Has data issue: false hasContentIssue false

A continuous in vitro method for estimation of the bioavailability of minerals and trace elements in foods: application to breads varying in phytic acid content

Published online by Cambridge University Press:  09 March 2007

Mechteldis G. E. Wolters
Affiliation:
TNO Biotechnology and Chemistry Institute, Department of Biochemistry and Physical Chemistry, PO Box 360, 3700 AJ Zeist, The Netherlands
Hendrika A. W. Schreuder
Affiliation:
TNO Biotechnology and Chemistry Institute, Department of Biochemistry and Physical Chemistry, PO Box 360, 3700 AJ Zeist, The Netherlands
Grietje Van Den Heuvel
Affiliation:
TNO Biotechnology and Chemistry Institute, Department of Biochemistry and Physical Chemistry, PO Box 360, 3700 AJ Zeist, The Netherlands
Henk J. Van Lonkhuijsen
Affiliation:
TNO Biotechnology and Chemistry Institute, Department of Biochemistry and Physical Chemistry, PO Box 360, 3700 AJ Zeist, The Netherlands
Ruud J. J. Hermus
Affiliation:
TNO Toxicology and Nutrition Institute, PO Box 360, 3700 AJ Zeist, The Netherlands
Alfons G. J. Voragen
Affiliation:
Wageningen Agricultural University, Department of Food Science, Biotechnion, PO Box 8129, 6700 E V Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A continuous in vitro method for the estimation of the bioavailability of minerals and trace elements is presented. This in vitro method is believed to be more representative of in vivo physiological conditions than in vitro methods based on equilibrium dialysis, because dialysable components are continuously removed from the pancreatic digestion mixture. The continuous in vitro method is compared with the equilibrium in vitro method with respect to the dialysability of Ca, Mg, Fe, Cu and Zn from eight different types of bread (varying in phytic acid content). The results show a pronounced effect of continuous removal of dialysable components from the pancreatic digestion mixture on the dialysability of minerals and trace elements. Furthermore, removal of dialysable components influences the effect of phytic acid on the bioavailability of minerals and trace elements. For these two reasons the importance of removal of dialysable components in vitro for the estimation of bioavailahility in vivo needs further investigation. The bioavailability of minerals and trace elements from bread samples is not related to the phytic acid content only. Therefore, the effect of phytic acid on the bioavailability of minerals and trace elements cannot be studied separately from the effects of other components on bioavailability.

Type
Mineral Metabolism
Copyright
Copyright © The Nutrition Society 1993

References

Avioli, L. V. (1988). Calcium and phosphorus. In Modern Nutrition in Health and Disease, 7th ed., pp. 142158 [Shils, M. S. and Young, V. R., editors]. Philadelphia: Lea and Febiger.Google Scholar
Bos, K. D., Verbeek, C., Van Eeden, C. H. P., Slump, P. & Wolters, M. G. E. (1991). Improved determination of phytate by ion-exchange chromatography. Journal of Agricultural and Food Chemistry 39, 17701772.CrossRefGoogle Scholar
Brune, M., Rossander, L. & Hallberg, L. (1989). Iron absorption and phenolic compounds: importance of different phenolic structures. European Journal of Clinical Nutrition 43, 547558.Google ScholarPubMed
Champagne, E. T. (1988). Effects of pH on mineral-phytate, protein-mineral-phytate, and mineral-fiber interactions. Possible consequences of atrophic gastritis on mineral bioavailability from high-fiber foods. Journal of the American College of Nutrition 7, 499508.CrossRefGoogle ScholarPubMed
Champagne, E. T. & Phillippy, B. Q. (1989). Effects of pH on calcium, zinc, and phytate solubilities and complexes following in vitro digestions of soy protein isolate. Journal of Food Science 54, 587592.CrossRefGoogle Scholar
Churella, H. R. & Vivian, V. M. (1989). Effect of phytic acid level in soy protein based infant formulas on mineral availability in the rat. Journal of Agricultural und Food Chemistry 31, 13521357.CrossRefGoogle Scholar
Clemens, E. T., Stevens, C. E. & Southworth, M. (1975). Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of swine. Journal of Nutrition 105, 759768.CrossRefGoogle ScholarPubMed
Fairbanks, V. F. & Beutler, E. (1988). Iron. In Modern Nutrition in Health und Disease, 7th ed., pp. 193226 [Shils, M.E. and Young, V. R., editors], Philadelphia: Lea and Febiger.Google Scholar
Fernandez, R. & Phillips, S. F. (1982). Components of fiber bind iron in vitro. American Journal of Clinical Nutrition 35, 100106.CrossRefGoogle ScholarPubMed
Forbes, A. L., Adams, C. E., Arnaud, M. E., Chichester, C. O., Cook, J. D., Harrison, B. N., Hurrell, R. F., Kahn, S. G., Morris, E. G., Tanner, J. T. & Whittaker, P. (1989). Comparison of in vitro, animal, and clinical determinations of iron bioavailability: International Nutritional Anemia Consultative Group Task Force report on iron bioavailability. American Journal of Clinical Nutrition 49, 225238.CrossRefGoogle ScholarPubMed
Hallberg, L. (1987). Wheat fiber, phytates and iron absorption. Scandinavian Journal of Gastroenterology 22, Suppl., 7379CrossRefGoogle Scholar
Hallberg, L., Brune, M. & Rossander, L. (1986). Effect of ascorbic acid on iron absorption from different types of meals. Human Nutrition: Applied Nutrition 40A, 97113.Google Scholar
Hallberg, L., Rossander, L. & Skanberg, A.-B. (1987). Phytates and the inhibitory effect of bran on iron absorption in man. American Journal of Clinical Nutrition 45, 988996.CrossRefGoogle ScholarPubMed
Hazell, T. & Johnson, I. T. (1987 a). Effects of food processing and fruit juices on in-vitro estimated iron availability from cereals, vegetables and fruits. Journal of the Science of Food and Agriculture 38, 7382.CrossRefGoogle Scholar
Hazell, T. & Johnson, I. T. (1987 b). In vitro estimation of iron availability from a range of plant foods: influence of phytate, ascorbate and citrate. British Journal of Nutrition 57, 223233.CrossRefGoogle ScholarPubMed
Hunt, J. R., Johnson, P. E. & Swan, P. B. (1987). Dietary conditions influencing relative zinc availability from foods to the rat and correlations with in vitro measurements. Journal of Nutrition 117, 19131923.CrossRefGoogle Scholar
Hurrell, R. F., Lynch, S. R., Trinidad, T. P., Dassenko, S. A. & Cook, J. D. (1988). Iron absorption in humans: bovine serum albumin compared with beef muscle and egg white. American Journal of Clinical Nutrition 47, 102107.CrossRefGoogle ScholarPubMed
Lock, S.Bender, A. E. (1980). Measurement of chemically-available iron in foods by incubation with human gastric juice in vitro. British Journal of Nutrition 43, 413420.CrossRefGoogle ScholarPubMed
Lonnerdal, B., Sandberg, A.-S., Sandstrom, B. & Kunz, C. (1989). Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. Journal of Nutrition 119, 211214.CrossRefGoogle ScholarPubMed
Martin, C. J. & Evans, W. J. (1986). Phytic acid-metal ion interactions. II. The effect of pH on Ca(II) binding. Journal of Inorganic Biochemistry 27, 1730.CrossRefGoogle ScholarPubMed
Martin, C. J. & Evans, W. J. (1987). Phytic acid: divalent cation interactions. V. Titrimetric, calorimetric, and binding studies with cobalt (II) and nickel (II) and their comparison with other metal ions. Journal of Inorganic Biochemistry 30, 101119.CrossRefGoogle Scholar
Mertz, W. (1981). The essential trace elements. Science 213, 13321338.CrossRefGoogle ScholarPubMed
Miller, D. D., Schricker, B. R., Rasmussen, R. R. & Van Campen, D. (1981). An in vitro method for estimation of iron availability from meals. American Journal of Clinical Nutrition 34, 22482256.CrossRefGoogle Scholar
Narasinga Rao, B. S. & Prabhavathi, T. (1978). An in vitro method for predicting the bioavailability of iron from foods. American Journal of Clinical Nutrition 31, 169175.CrossRefGoogle Scholar
Nävert, B., Sandstrom, B. & Cederblad, A. (1985). Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. British Journal of Nutrition 53, 4753.Google ScholarPubMed
Nielsen, F. H. (1988). Nutritional significance of the ultratrace elements. Nutrition Reviews 46, 337341.CrossRefGoogle ScholarPubMed
Prasad, A. S. (editor) (1988). Essential and Toxic Trace Elements in Human Health and Disease. New York: Alan R. Liss, Inc.Google Scholar
Reddy, M. B. & Cook, J. D. (1991). Assessment of dietary determinants of nonheme-iron absorption in humans and rats. American Journal of Clinical Nutrition 54, 723728.CrossRefGoogle ScholarPubMed
Sandberg, A.-S., Carlsson, N.-G. & Svanberg, U. (1989). Effects of inositol tri-, tetra-, penta-, and hexaphosphates on in vitro estimation of iron availability. Journal of Food Science 54, 159161.CrossRefGoogle Scholar
Sandström, B. & Almgren, A. (1989). Dialysable zinc after in vitro digestion in comparison with zinc absorption measured in humans. Special Publicarion, Royal Society of Chemistry: Nutrient Availability: Chemical and Biological Aspects 72, 238240.Google Scholar
Sandström, B. & Cederblad, A. (1987). Effect of ascorbic acid on the absorption of zinc and calcium in man. International Journal of Vitamin and Nutrition Research 57, 8790.Google ScholarPubMed
Saxena, A. & Seshadri, S. (1988). The effect of whole milk, milk protein and some constituent amino acids on the in vitro availability of iron from cereal meals. Nutrition Research 8, 717724.CrossRefGoogle Scholar
Schricker, B. R., Miller, D. D., Rasmussen, R. R. & Van Campen, D. (1981). A comparison of in vivo and in vitro methods for determining availability of iron from meals. American Journal of Clinical Nutrition 34, 22572263.CrossRefGoogle ScholarPubMed
Schuette, S. A, Knowles, J. B. & Ford, H. E. (1989). Effect of lactose or its component sugars on jejunal calcium absorption in adult man. American Journal of Clinical Nutrition 50, 10841087.CrossRefGoogle ScholarPubMed
Schwartz, R. & Nevins, P. (1989). Effects of phytate reduction, fat extraction, and level of Ca on Ca and Zn bioavailability: compared in vitro and in vivo. Biological Trace Element Research 19, 93106.CrossRefGoogle ScholarPubMed
Shils, M. E. (1988). Magnesium. In Modern Nutrition in Health and Disease, 7th ed., pp. 159192 [Shils, M. E. and Young, V. R., editors]. Philadelphia: Lea and Febiger.Google Scholar
Simpson, C. J. & Wise, A. (1990). Binding of zinc and calcium to inositol phosphates (phytate) in vitro. British Journal of Nutrition 64, 225232.CrossRefGoogle ScholarPubMed
Simpson, K. M., Morris, E. R. & Cook, J. D. (1981). The inhibitory effect of bran on iron absorption in man. American Journal of Clinical Nutrition 34, 14691478.CrossRefGoogle ScholarPubMed
Solomons, N. W. (1988). Zinc and copper. In Modern Nutrition in Health and Disease, 7th ed., pp. 238262 [Shils, M. E. and Young, V. R., editors]. Philadelphia: Lea and Febiger.Google Scholar
Spivey Fox, M. R. & Tao, S.-H. (1989). Antinutritive effects of phytate and other phosphorylated derivates. In Nutritional Toxicology, vol. 3, pp. 5996 [Hatchcock, J. N., editor]. New York: Academic Press.Google Scholar
Sri Kantha, S., Hettiarachchy, N. S. & Erdman, J. W. (1986). Nutrient, antinutrient contents, and solubility profiles of nitrogen, phytic acid, and selected minerals in winged bean flour, Cereal Chemistry 63, 913.Google Scholar
Torre, M., Rodriguez, A. R. & Saura-Calixto, F. (1991). Effects of dictary fiber and phytic acid on mineral availability. Critical Reviews in Food Science and Nutrition 1, 122.CrossRefGoogle Scholar
Turnlund, J. R., Smith, R. G., Kretsch, M. J., Keyes, W. R. & Shah, A. G. (1990). Milk's effect on the bioavailability of iron from cereal-based diets in young women by use of in vitro and in vivo methods. American Journal of Clinical Nutrition 52, 373378.CrossRefGoogle ScholarPubMed
Van Lonkhuijsen, H. J. & van Gelderen, A. W. (1985). Veranderingen in de gehalten aan fytinezuur tijdens het broodbakken met gist en met znurdesem (Changes in the contents of phytic acid during bread baking with yeast and with sour-dough). Voeding 46, 98101.Google Scholar
Wien, E. M. & Schwartz, R. (1983). Comparison of in vitro and in vivo measurements of dietary Ca exchangeability and bioavailability. Journal of Nutrition 113, 388393.CrossRefGoogle ScholarPubMed
Wilson, P. C. & Greene, H. L. (1988). The gastrointestinal tract: portal to nutrient utilization. In Modern Nutrition in Health and Disease, 7th ed., pp. 481499 [Shils, M. E. and Young, V. R., editors]. Philadelphia: Lea and Febiger.Google Scholar