Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-26T12:34:25.141Z Has data issue: false hasContentIssue false

Perception of Biological Motion and Emotion in Mild Cognitive Impairment and Dementia

Published online by Cambridge University Press:  12 June 2012

Julie D. Henry*
Affiliation:
School of Psychology, University of Queensland, Brisbane, Queensland
Claire Thompson
Affiliation:
School of Psychology, James Cook University, Singapore
Peter G. Rendell
Affiliation:
School of Psychology, Australian Catholic University, Melbourne, Victoria
Louise H. Phillips
Affiliation:
School of Psychology, University of Aberdeen, Aberdeen, Scotland
Jessica Carbert
Affiliation:
School of Psychology, University of New South Wales, Sydney, New South Wales
Perminder Sachdev
Affiliation:
Brain and Ageing Research Program, School of Psychiatry, University of New South Wales, Sydney, New South Wales Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales
Henry Brodaty
Affiliation:
Brain and Ageing Research Program, School of Psychiatry, University of New South Wales, Sydney, New South Wales Dementia Collaborative Research Centre, University of New South Wales, Sydney, New South Wales
*
Correspondence and reprint requests to: Julie D. Henry, School of Psychology, University of Queensland, St Lucia QLD 4072 Australia. E-mail: julie.henry@uq.edu.au

Abstract

Participants diagnosed with mild cognitive impairment (MCI), dementia and controls completed measures that required decoding emotions from point-light displays of bodily motion, and static images of facial affect. Both of these measures tap social cognitive processes that are considered critical for social competency. Consistent with prior literature, both clinical groups were impaired on the static measure of facial affect recognition. The dementia (but not the MCI) group additionally showed difficulties interpreting biological motion cues. However, this did not reflect a specific deficit in decoding emotions, but instead a more generalized difficulty in processing visual motion (both to action and to emotion). These results align with earlier studies showing that visual motion processing is disrupted in dementia, but additionally show for the first time that this extends to the recognition of socially relevant biological motion. The absence of any MCI related impairment on the point-light biological emotion measure (coupled with deficits on the measure of facial affect recognition) also point to a potential disconnect between the processes implicated in the perception of emotion cues from static versus dynamic stimuli. For clinical (but not control) participants, performance on all recognition measures was inversely correlated with level of semantic memory impairment. (JINS, 2012, 18, 1–8)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amieva, H., Phillips, L.H., Della Sala, S., Henry, J.D. (2004). Inhibitory functioning in Alzheimer's Disease. Brain, 127, 949964. doi:10.1093/brain/awh045Google Scholar
Ekman, P., Friesen, W.V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Fischer, P., Jungwirth, S., Zehetmayer, S., Weissgram, S., Hoenigschnabl, S., Gelpi, E., Tragl, K.H. (2007). Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology, 68, 288291. doi:10.1212/01.wnl.0000252358.03285.9dGoogle Scholar
Gilmore, G.C., Wenk, H.E., Naylor, L.A., Koss, E. (1994). Motion perception and Alzheimers disease. Journals of Gerontology, 49, P52P57.Google Scholar
Glosser, G., Wiley, M.J., Barnoski, E.J. (1998). Gestural communication in Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 20, 113. doi:10.1076/jcen.20.4.1.1139Google Scholar
Heberlein, A.S., Adolphs, R., Tranel, D., Damasio, H. (2004). Cortical regions for judgements of emotions and personality traits from point-light walkers. Journal of Cognitive Neuroscience, 16, 11431158. doi:10.1162/0898929041920423Google Scholar
Henry, J.D., Ruffman, T., McDonald, S., Peek O'Leary, M., Phillips, L.H., Brodaty, H., Rendell, P.R. (2008). Recognition of disgust is selectively preserved in Alzheimer's disease. Neuropsychologia, 46, 13631370. doi:10.1016/j.neuropsychologia.2007.12.012Google Scholar
Hubbard, G., Cook, A., Tester, S., Downs, M. (2002). Beyond words—Older people with dementia using and interpreting nonverbal behaviour. Journal of Aging Studies, 16, 155167. doi:10.1016/S0890-4065(02)00041-5Google Scholar
Insch, P.M., Bull, R., Phillips, L.H., Allen, R., Slessor, G. (2012). Adult aging, processing style and the perception of biological motion. Experimental Aging Research, 38, 169185.Google Scholar
Kaplan, E., Goodglass, H., Weintraub, S. (1983). Boston Naming Test. Philadelphia: Lea & Febiger.Google Scholar
Kveraga, K., Ghuman, A.S., Bar, M. (2007). Top-down predictions in the cognitive brain. Brain and Cognition, 65, 145168. doi:10.1016/j.bandc.2007.06.007Google Scholar
Lopez, O.L., Jagust, W.J., DeKosky, S.T., Becker, J.T., Fitzpatrick, A., Dulberg, C., Kuller, L.H. (2003). Prevalence and classification of mild cognitive impairment in the cardiovascular health study cognition study: Part 1. Archives of Neurology, 60, 13851389. doi:10.1001/archneur.60.10.1385Google Scholar
Murphy, S.T. (2001). Feeling without thinking: Affective primary and the nonconscious processing of emotion. In J.A. Bargh & D.K. Apsley (Eds.), Unravelling the complexities of social life: A festschrift in honour of Robert B. Zajonc. Washington DC: American Psychological Association.Google Scholar
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194. doi:10.1111/j.1365-2796.2004.01388.xGoogle Scholar
Petersen, R.C. (2007). Mild cognitive impairment: Current research and clinical implications. Seminars in Neurology, 27, 2231. doi:10.1055/s-2006-956752Google Scholar
Phillips, L.H., Channon, S., Tunstall, M., Hedenstrom, A., Lyons, K. (2008). The role of working memory in decoding emotions. Emotion, 8, 184191. doi:10.1037/1528-3542.8.2.184Google Scholar
Phillips, L.H., Scott, C., Henry, J.D., Mowat, D., Bell, J.S. (2010). Emotion perception in Alzheimer's disease and mood disorder in old age. Psychology and Aging, 25, 3847. doi:10.1037/a0017369Google Scholar
Reitan, R.M., Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery: Theory and interpretation. Tucson, AZ: Neuropsychology Press.Google Scholar
Rizzo, M., Nawrot, M. (1998). Perception of movement and shape in Alzheimer's disease. Brain, 121, 22592270. doi:10.1093/brain/121.12.2259Google Scholar
Rosen, H.J., Wilson, M.R., Schauer, G.F., Allison, S., Gorno-Tempini, M., Pace-Savitsky, C., Miller, B.L. (2006). Neuroanatomical correlates of impaired recognition of emotion in dementia. Neuropsychologia, 44, 365373. doi:10.1016/j.neuropsychologia.2005.06.012Google Scholar
Ruffman, T., Dittrich, W., Sullivan, S. (2009). Older adults’ recognition of bodily and auditory expressions of emotion. Psychology and Aging, 24, 614622. doi:10.1037/a0016356Google Scholar
Ruffman, T., Henry, J.D., Livingstone, V., Phillips, L.H. (2008). A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neuroscience and Biobehavioral Reviews, 32, 863881. doi:10.1016/j.neubiorev.2008.01.001Google Scholar
Schneider, J.A., Arvanitakis, Z., Bang, W., Bennett, D.A. (2007). Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology, 69, 21972204. doi:10.1212/01.wnl.0000271090.28148.24Google Scholar
Schroeter, M.L., Stein, T., Maslowski, N., Neumann, J. (2009). Neural correlates of Alzheimer's disease and mild cognitive impairment: A systematic and quantitative meta-analysis involving 1351 patients. Neuroimage, 47, 11961206. http://dx.doi.org/10.1016/j.neuroimage.2009.05.037Google Scholar
Sivan, A.B., Spreen, O. (1996). Der Benton-Test (7th ed.). Berne, Switzerland: Verlag Hans Huber.Google Scholar
Sollberger, M., Stanley, C.M., Wilson, S.M., Gyurak, A., Beckman, V., Growdon, M., Rankin, K.P. (2009). Neural basis of interpersonal traits in neurodegenerative diseases. Neuropsychologia, 47, 28122827. doi:10.1016/j.neuropsychologia.2009.06.006Google Scholar
Stephan, B.C.M., Hunter, S., Harris, D., Llewellyn, D.J., Siervo, M., Matthews, F.E., Brayne, C. (2011). The neuropathological profile of mild cognitive impairment (MCI): A systematic review. Molecular Psychiatry, [Epub ahead of print].Google Scholar
Teng, E., Lu, P.H., Cummings, J.L. (2007). Deficits in facial emotion processing in mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 23, 271279. doi:10.1159/000100829Google Scholar
Thompson, C., Brodaty, H., Trollor, J., Sachdev, P. (2010). Behavioral and psychological symptoms associated with dementia subtype and severity. International Psychogeriatrics, 22, 300305.Google Scholar
Vanrie, J., Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behavior Research Methods Instruments & Computers, 36, 625629. doi:10.3758/BF03206542Google Scholar
Wechsler. (1997). Adult Intelligence Scale – Third Edition. San Antonio, TX: The Psychological Corporation.Google Scholar
Weiss, E.M., Kohler, C.G., Vonbank, J., Stadelmann, E., Kemmler, G., Hinterhuber, H., Marksteiner, J. (2008). Impairment in emotion recognition abilities in patients with mild cognitive impairment, early and moderate Alzheimer disease compared with healthy comparison subjects. American Journal of Geriatric Psychiatry, 16, 974980. doi:10.1097/JGP.0b013e318186bd53Google Scholar
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., Petersen, R.C. (2004). Mild cognitive impairment-beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240246. doi:10.1111/j.1365-2796.2004.01380.xGoogle Scholar
Wittenberg, D., Possin, K.L., Rascovsky, K., Rankin, K.P., Miller, B.L., Dramer, J.H. (2008). The early neuropsychological and behavioral characteristics of frontotemporal dementia. Neuropsychology Review, 18, 91102.Google Scholar