Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T14:17:19.687Z Has data issue: false hasContentIssue false

Phase transformations in nanocomposite ZrAlN thin films during annealing

Published online by Cambridge University Press:  30 May 2012

Lina Rogström*
Affiliation:
Nanostructured Materials, Department of Physics, Chemistry, and Biology (IFM), Linköping University, S-581 83 Linköping, Sweden
Mats Ahlgren
Affiliation:
Sandvik Tooling AB, 126 80 Stockholm, Sweden
Jonathan Almer
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
Lars Hultman
Affiliation:
Thin Film Physics, Department of Physics, Chemistry, and Biology (IFM), Linköping University, S-581 83 Linköping, Sweden
Magnus Odén
Affiliation:
Nanostructured Materials, Department of Physics, Chemistry, and Biology (IFM), Linköping University, S-581 83 Linköping, Sweden
*
a)Address all correspondence to this author. e-mail: linro@ifm.liu.se
Get access

Abstract

Nanocomposite Zr0.52Al0.48N1.11 thin films consisting of crystalline grains surrounded by an amorphous matrix were deposited using cathodic arc evaporation. The structure evolution after annealing of the films was studied using high-energy x-ray scattering and transmission electron microscopy. The mechanical properties were characterized by nanoindentation on as-deposited and annealed films. After annealing in temperatures of 1050–1400 °C, nucleation and grain growth of cubic ZrN takes place in the film. This increases the hardness, which reaches a maximum, while parts of the film remain amorphous. Grain growth of the hexagonal AlN phase occurs above 1300 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Veprek, S. and Reiprich, S.: A concept for the design of novel superhard coatings. Thin Solid Films 268(1–2), 64 (1995).Google Scholar
2.Veprek, S., Niederhofer, A., Moto, K., Bolom, T., Männling, H.D., Nesladek, P., Dollinger, G., and Bergmaier, A.: Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa. Surf. Coat. Technol. 133134, 152 (2000).Google Scholar
3.Ma, D., Ma, S., and Xu, K.: Superhard nanocomposite Ti-Si-C-N coatings prepared by pulsed-d.c. plasma enhanced CVD. Surf. Coat. Technol. 200, 382 (2005).Google Scholar
4.Guo, Y., Ma, S., and Xu, K.: Effects on carbon content and annealing temperature on the microstructure and hardness of super hard Ti-Si-C-N nanocomposite coatings prepared by pulsed d.c. PCVD. Surf. Coat. Technol. 201, 5240 (2007).Google Scholar
5.Winkelmann, A., Cairney, J.M., Hoffman, M.J., Martin, P.J., and Bendavid, A.: Zr-Si-N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties. Surf. Coat. Technol. 200(14–15), 4213 (2006).Google Scholar
6.Mitterer, C., Losbichler, P., Hofer, F., Warbichler, P., Gibson, P.N., and Gissler, W.: Nanocrystalline hard coatings within the quasi-binary system TiN-TiB2. Vacuum 50(3–4), 313 (1998).Google Scholar
7.Karvankova, P., Veprek-Heijman, M.G.J., Zindulka, O., Bergmaier, A., and Veprek, S.: Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: A comparative study of their properties. Surf. Coat. Technol. 163164(0), 149 (2003).Google Scholar
8.Männling, H.-D., Patil, D.S., Moto, K., Jilek, M., and Veprek, S.: Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides. Surf. Coat. Technol. 146147, 263 (2001).Google Scholar
9.Koehler, J.S.: Attempt to design a strong solid. Phys. Rev. B 2(2), 547 (1970).Google Scholar
10.Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J.E., Markert, L.C., and Greene, J.E.: Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys. 62(2), 481 (1987).Google Scholar
11.Söderberg, H., Odén, M., Molina-Aldareguia, J.M., and Hultman, L.: Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering. J. Appl. Phys. 97(11), 114327 (2005).Google Scholar
12.Mayrhofer, P.H., Hörling, A., Karlsson, L., Mitterer, C., and Hultman, L.: Self-organized nanostructures in the Ti-Al-N system. Appl. Phys. Lett. 83(10), 2049 (2003).Google Scholar
13.Hörling, A., Hultman, L., Odén, M., Sjölén, J., and Karlsson, L.: Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools. Surf. Coat. Technol. 191(2–3), 384 (2005).Google Scholar
14.Knutsson, A., Johansson, M.P., Persson, P.O.Å., Hultman, L., and Odén, M.: Thermal decomposition products in arc evaporated TiAlN/TiN multilayers. Appl. Phys. Lett. 93, 143110 (2008).Google Scholar
15.Tasnádi, F., Abrikosov, I.A., Rogström, L., Almer, J., Johansson, M.P., and Odén, M.: Significant elastic anisotropy in Ti1-xAlxN alloys. Appl. Phys. Lett. 97, 231902 (2010).Google Scholar
16.Flink, A., Andersson, J.M., Alling, B., Daniel, R., Sjölén, J., Karlsson, L., and Hultman, L.: Structure and thermal stability of arc evaporated (Ti0.33Al0.67)1-xSixN thin films. Thin Solid Films 517(2), 714 (2008).Google Scholar
17.Johnson, L.J.S., Rogström, L., Johansson, M.P., Odén, M., and Hultman, L.: Microstructure evolution and age hardening in (Ti, Si)(C, N) thin films deposited by cathodic arc evaporation. Thin Solid Films 519, 1397 (2010).Google Scholar
18.Mayrhofer, P.H., Stoiber, M., and Mitterer, C.: Age hardening of PACVD TiBN thin films. Scr. Mater. 53(2), 241 (2005).Google Scholar
19.Lind, H., Forsén, R., Alling, B., Ghafoor, N., Tasnádi, F., Johansson, M.P., Abrikosov, I.A., and Odén, M.: Improving thermal stability of hard coating films via a concept of multicomponent alloying. Appl. Phys. Lett. 99, 091903 (2011).Google Scholar
20.Hasegawa, H., Kawate, M., and Suzuki, T.: Effects of Al contents on microstructures of Cr1-xAlxN and Zr1-xAlxN films synthesized by cathodic arc method. Surf. Coat. Technol. 200, 2409 (2005).Google Scholar
21.Lamni, R., Sanjinés, R., Parlinska-Wojtan, M., Karimi, A., and Lévy, F.: Microstructure and nanohardness properties of Zr-Al-N and Zr-Cr-N thin films. J. Vac. Sci. Technol., A 23(4), 593 (2005).Google Scholar
22.Rogström, L., Johnson, L.J.S., Johansson, M.P., Ahlgren, M., Hultman, L., and Odén, M.: Age hardening in arc-evaporated ZrAlN thin films. Scr. Mater. 62, 739 (2010).Google Scholar
23.Rogström, L., Johnson, L.J.S., Johansson, M.P., Ahlgren, M., Hultman, L., and Odén, M.: Thermal stability and mechanical properties of arc evaporated ZrN/ZrAlN multilayers. Thin Solid Films 519, 694 (2010).Google Scholar
24.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).Google Scholar
25.Almer, J., Lienert, U., Peng, R.L., Schlauer, C., and Odén, M.: Strain and texture analysis of coatings using high-energy x-rays. J. Appl. Phys. 94(1), 697 (2003).Google Scholar
26.Brik, M.G. and Ma, C.G.: First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Cs, Ti, V, Cr, Zr, Nb). Comp. Mat. Sci. 51, 380 (2012).Google Scholar
27.Jemian, P.R., Weertman, J.R., Long, G.G., and Spal, R.D.: Characterization of 9Cr-1MoVNb steel by anomalous small-angle x-ray scattering. Acta Metall. Mater. 39(11), 2477 (1991).Google Scholar
28.Ilavsky, J. and Jemian, P.R.: Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42(2), 347 (2009).Google Scholar
29.Al3Zr, PDF No. 48-1385, JCPDS - International Centre for Diffraction Data. (1998).Google Scholar
30.Al3Zr4, PDF No. 48-1381, JCPDS - International Centre for Diffraction Data. (1998).Google Scholar
31.Petrov, I., Barna, P.B., Hultman, L., and Greene, J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21(5), S117 (2003).Google Scholar
32.Diserens, M., Patscheider, J., and Lévy, F.: Improving the properties of titanium nitride by incorporation of silicon. Surf. Coat. Technol. 108109(1–3), 241 (1998).Google Scholar
33.Patscheider, J., Zehnder, T., and Diserens, M.: Structure-performance relations in nanocomposite coatings. Surf. Coat. Technol. 146147, 201 (2001).Google Scholar
34.Sandu, C.S., Medjani, F., Sanjinés, R., Karimi, A., and Lévy, F.: Structure, morphology and electrical properties of sputtered Zr-Si-N thin films: From solid solution to nanocomposite. Surf. Coat. Technol. 201(7), 4219 (2006).Google Scholar
35.Anders, A.: Cathodic Arcs, From Fractal Spots to Energetic Condensation (Springer Series, New York, NY, 2008).Google Scholar
36.Yee, D.S., Cuomo, J.J., Frisch, M.A., and Smith, D.P.E.: Reactive radio frequency sputter deposition of higher nitrides of titanium, zirconium, and hafnium. J. Vac. Sci. Technol., A 4(3), 381 (1986).Google Scholar
37.Perry, A.J.: On the existence of point defects in physical vapor deposited films of TiN, ZrN, and HfN. J. Vac. Sci. Technol., A 6(3), 2140 (1988).Google Scholar
38.Dauchot, J.P., Edart, S., Wautelet, M., and Hecq, M.: Synthesis of zirconium nitride films monitored by in situ soft x-ray spectrometry. Vacuum 46(8–10), 927 (1995).Google Scholar
39.Pichon, L., Girardeau, T., Straboni, A., Lignou, F., Guérin, P., and Perrière, J.: Zirconium nitrides deposited by dual ion beam sputtering: Physical properties and growth modelling. Appl. Surf. Sci. 150(1–4), 115 (1999).Google Scholar
40.Benia, H.M., Guemmaz, M., Schmerber, G., Mosser, A., and Parlebas, J.-C.: Investigations on non-stoichiometric zirconium nitrides. Appl. Surf. Sci. 200, 231 (2002).Google Scholar
41.Spillmann, H., Willmott, P.R., Morstein, M., and Uggowitzer, P.J.: ZrN, ZrxAlyN and ZrxGayN thin films - novel materials for hard coatings grown using pulsed laser deposition. Appl. Phys. A 73, 441 (2001).Google Scholar
42.Ruan, J.-L., Huang, J.-L., Chen, J.S., and Lii, D.-F.: Effects of substrate bias on the reactive sputtered Zr-Al-N diffusion barrier films. Surf. Coat. Technol. 200, 1652 (2005).Google Scholar
43.Toth, L.E.: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
44.Uhrenius, B.: Evaluation of molar volumes in the Co-W-C system and calculation of volume fractions of phases in cemented carbides. Int. J. Refract. Met. Hard Mater. 12, 121 (1994).Google Scholar
45.Gruss, K.A., Zheleva, T., Davis, R.F., and Watkins, T.R.: Characterization of zirconium nitride coatings deposited by cathodic arc sputtering. Surf. Coat. Technol. 107, 115 (1998).Google Scholar
46.Niu, E.W., Li, L., Lv, G.H., Chen, H., Feng, W.R., Fan, S.H., Yang, S.Z., and Yang, X.Z.: Influence of substrate bias on the structure and properties of ZrN films deposited by cathodic vacuum arc. Mater. Sci. Eng., A 460461, 135 (2007).Google Scholar
47.Mayrhofer, P.H., Tischler, G., and Mitterer, C.: Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering. Surf. Coat. Technol. 142144, 78 (2001).Google Scholar
48.Tung, H.-M., Huang, J.-H., Tsai, D.-G., Ai, C.-F., and Yu, G.-P.: Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment. Mater. Sci. Eng., A 500(1–2), 104 (2009).Google Scholar
49.Siegel, R.W. and Fougere, G.E.: Mechanical properties of nanophase metals. Nanostruct. Mater. 6(1–4), 205 (1995).Google Scholar
50.Schiotz, J., Di Tolla, F.D., and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561 (1998).Google Scholar
51.Rester, M., Neidhardt, J., Eklund, P., Emmerlich, J., Ljungcrantz, H., Hultman, L., and Mitterer, C.: Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance. Mater. Sci. Eng., A 429(1–2), 90 (2006).Google Scholar
52.Kim, H.S. and Bush, M.B.: The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11(3), 361 (1999).Google Scholar
53.Török, E., Perry, A.J., Chollet, L., and Sproul, W.D.: Young’s modulus of TiN, TiC, ZrN and HfN. Thin Solid Films 153(1–3), 37 (1987).Google Scholar
54.Perry, A.J.: A contribution to the study of Poisson’s ratios and elastic constants of TiN, ZrN and HfN. Thin Solid Films 193/194, 463 (1990).Google Scholar
55.Gerlich, D., Dole, S.L., and Slack, G.A.: Elastic properties of aluminium nitride. J. Phys. Chem. Solids 47(5), 437 (1986).Google Scholar
56.Mortet, V., Nesladek, M., Haenen, K., Morel, A., D’Olieslaeger, M., and Vanecek, M.: Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering. Diamond Relat. Mater. 13 (4–8), 1120 (2004).Google Scholar