Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T17:48:32.425Z Has data issue: false hasContentIssue false

Identifying Hexagonal Boron Nitride Monolayers by Transmission Electron Microscopy

Published online by Cambridge University Press:  12 April 2012

Michael L. Odlyzko
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
K. Andre Mkhoyan*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
*
Corresponding author. E-mail: mkhoyan@umn.edu
Get access

Abstract

Multislice simulations in the transmission electron microscope (TEM) were used to examine changes in annular-dark-field scanning TEM (ADF-STEM) images, conventional bright-field TEM (BF-CTEM) images, and selected-area electron diffraction (SAED) patterns as atomically thin hexagonal boron nitride (h-BN) samples are tilted up to 500 mrad off of the [0001] zone axis. For monolayer h-BN the contrast of ADF-STEM images and SAED patterns does not change with tilt in this range, while the contrast of BF-CTEM images does change; h-BN multilayer contrast varies strongly with tilt for ADF-STEM imaging, BF-CTEM imaging, and SAED. These results indicate that tilt series analysis in ADF-STEM image mode or SAED mode should permit identification of h-BN monolayers from raw TEM data as well as from quantitative post-processing.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alem, N., Erni, R., Kisielowski, C., Rossell, M., Gannett, W. & Zettl, A. (2009). Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys Rev B 80, 155425.CrossRefGoogle Scholar
Bangert, U., Eberlein, T., Nair, R.R., Jones, R., Gass, M., Bleloch, A.L., Novoselov, K.S., Geim, A. & Briddon, P.R. (2008). STEM plasmon spectroscopy of free standing graphene. Phys Stat Sol A 205, 22652269.Google Scholar
Chang, L.Y., Chen, F.R., Kirkland, A.I. & Kai, J.J. (2003). Calculations of spherical aberration-corrected imaging behaviour. J Electron Microsc 52, 359364.Google Scholar
Cowley, J. & Moodie, A. (1957). The scattering of electrons by atoms and crystals: A new theoretical approach. Acta Crystallogr 10, 609619.CrossRefGoogle Scholar
Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L. & Hone, J. (2010). Boron nitride substrates for high-quality graphene electronics. Nat Nanotech 5, 722726.Google Scholar
Gass, M.H., Bangert, U., Bleloch, A.L., Wang, P., Nair, R.R. & Geim, A.K. (2008). Free-standing graphene at atomic resolution. Nat Nanotech 3, 676681.Google Scholar
Geim, A.K. (2009). Graphene: Status and prospects. Science 324, 15301534.CrossRefGoogle Scholar
Geim, A.K. & Novoselov, K.S. (2007). The rise of graphene. Nat Mater 6, 183191.Google Scholar
Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.-H., Crommie, M.F., Cohen, M.L., Louie, S.G. & Zettl, A. (2009). Graphene at the edge: Stability and dynamics. Science 323, 17051708.CrossRefGoogle ScholarPubMed
Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C. & Zhi, C. (2010). Boron nitride nanotubes and nanosheets. ACS Nano 4, 29792993.Google Scholar
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L. & Muller, D.A. (2011). Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389392.CrossRefGoogle ScholarPubMed
Jin, C., Lin, F., Suenaga, K. & Iijima, S. (2009). Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett 102, 195505.CrossRefGoogle ScholarPubMed
Jinschek, J.R., Yucelen, E., Calderon, H.A. & Freitag, B. (2011). Quantitative atomic 3-d imaging of single/double sheet graphene structure. Carbon 49, 556562.CrossRefGoogle Scholar
Kelly, B. (1970). Thermal vibration amplitudes of carbon atoms in the graphite lattice parallel to the basal planes. J Nucl Mater 34, 189192.CrossRefGoogle Scholar
Kirkland, E.J. (2010). Advanced Computing in Electron Microscopy, 2nd ed.New York: Springer.Google Scholar
Kotakoski, J., Jin, C., Lehtinen, O., Suenaga, K. & Krasheninnikov, A. (2010). Electron knock-on damage in hexagonal boron nitride monolayers. Phys Rev B 82, 113404.Google Scholar
Kourkoutis, L.F., Parker, M.K., Vaithyanathan, V., Schlom, D.G. & Muller, D.A. (2011). Direct measurement of electron channeling in a crystal using scanning transmission electron microsopy. Phys Rev B 84, 075485.CrossRefGoogle Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571574.Google Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110, 118125.Google Scholar
LeBeau, J.M., Findlay, S.D., Wang, X., Jacobson, A.J., Allen, L.J. & Stemmer, S. (2009). High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment. Phys Rev B 79, 214110.Google Scholar
Loane, R.F., Xu, P. & Silcox, J. (1991). Thermal vibrations in convergent-beam electron diffraction. Acta Crystallogr A 47, 267278.Google Scholar
Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J. & Roth, S. (2007a). The structure of suspended graphene sheets. Nature 446, 6063.CrossRefGoogle ScholarPubMed
Meyer, J., Geim, A., Katsnelson, M., Novoselov, K., Obergfell, D., Roth, S., Girit, C. & Zettl, A. (2007b). On the roughness of single- and bi-layer graphene membranes. Solid State Comm 143, 101109.Google Scholar
Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F. & Zettl, A. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8, 35823586.CrossRefGoogle ScholarPubMed
Meyer, J.C., Kurasch, S., Park, H.J., Skakalova, V., Knzel, D., Gro, A., Chuvilin, A., Algara-Siller, G., Roth, S., Iwasaki, T., Starke, U., Smet, J.H. & Kaiser, U. (2011). Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nat Mater 10, 209215.Google Scholar
Mkhoyan, K.A., Batson, P.E., Cha, J., Schaff, W.J. & Silcox, J. (2006). Direct determination of local lattice polarity in crystals. Science 312, 1354.Google Scholar
Mkhoyan, K.A., Maccagnano-Zacher, S.E., Kirkland, E.J. & Silcox, J. (2008). Effects of amorphous layers on ADF-STEM imaging. Ultramicroscopy 108, 791803.Google Scholar
Nellist, P.D. & Pennycook, S.J. (2000). The principles and interpretation of annular dark-field Z-contrast imaging. Adv Imag Electron Phys 113, 147203.Google Scholar
Novoselov, K.S. (2005). Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102, 1045110453.Google Scholar
Pennycook, S.J. & Boatner, L.A. (1988). Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336, 565567.Google Scholar
Pumera, M. (2009). Electrochemistry of graphene: New horizons for sensing and energy storage. Chem Rec 9, 211223.Google Scholar
Sawada, H., Tomita, T., Naruse, M., Honda, T., Hambridge, P., Hartel, P., Haider, M., Hetherington, C., Doole, R., Kirkland, A., Hutchison, J., Titchmarsh, J. & Cockayne, D. (2005). Experimental evaluation of a spherical aberration-corrected TEM and STEM. J Electr Microsc 54, 119121.Google ScholarPubMed
Suenaga, K. & Koshino, M. (2010). Atom-by-atom spectroscopy at graphene edge. Nature 468, 10881090.Google Scholar
Zan, R., Bangert, U., Ramasse, Q. & Novoselov, K. (2011). Imaging of Bernal stacked and misoriented graphene and boron nitride: Experiment and simulation. J Microsc 244(2), 152158.CrossRefGoogle ScholarPubMed