Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T10:02:54.127Z Has data issue: false hasContentIssue false

An experimental mesocosm for long-term studies of reef corals

Published online by Cambridge University Press:  09 December 2011

Cecilia D'angelo
Affiliation:
National Oceanography Centre, Southampton/University of Southampton, European Way, Southampton, SO14 3ZH, UK
Jörg Wiedenmann*
Affiliation:
National Oceanography Centre, Southampton/University of Southampton, European Way, Southampton, SO14 3ZH, UK
*
Correspondence should be addressed to: J. Wiedenmann, National Oceanography Centre, Southampton/University of Southampton email: joerg.wiedenmann@noc.soton.ac.uk

Abstract

Molecular biological methods including genomic and proteomic approaches hold a specific promise to provide new insights into the stress physiology of corals. However, to fully exploit the power of these techniques, aquarium setups are required that allow biological assays under tightly controlled laboratory conditions. Here, details are provided about the successful development of a closed coral mesocosm at the National Oceanography Centre, Southampton. The system can be operated without access to natural seawater and allows long-term observations and experimental studies of reef corals. The individual experimental tanks allow the corals to be exposed, for example, to different light and/or temperature conditions without the need to disconnect them from the system.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barneah, O., Benayahu, Y. and Weis, V.M. (2006) Comparative proteomics of symbiotic and aposymbiotic juvenile soft corals. Marine Biotechnology 8, 1116.CrossRefGoogle ScholarPubMed
Bay, L.K., Ulstrup, K.E., Nielsen, H.B., Jarmer, H., Goffard, N., Willis, B.L., Miller, D.J. and Van Oppen, M.J. (2009) Microarray analysis reveals transcriptional plasticity in the reef building coral Acropora millepora. Molecular Ecology 18, 30623075.CrossRefGoogle ScholarPubMed
D'Angelo, C., Denzel, A., Vogt, A., Matz, M.V., Oswald, F., Salih, A., Nienhaus, G.U. and Wiedenmann, J. (2008) Blue light regulation of host pigment in reef-building corals. Marine Ecology Progress Series 364, 97106.CrossRefGoogle Scholar
Desalvo, M.K., Voolstra, C.R., Sunagawa, S., Schwarz, J.A., Stillman, J.H., Coffroth, M.A., Szmant, A.M. and Median, M. (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Molecular Ecology 17, 39523971.CrossRefGoogle ScholarPubMed
Donner, S.D., Skirving, W.J., Little, C.M., Oppenheimer, M. and Hoegh-Guldberg, O. (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biology 11, 22512265.CrossRefGoogle ScholarPubMed
Falkowski, P.G. and Dubinsky, Z. (1981) Light–shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 28, 172174.CrossRefGoogle Scholar
Fossa, S.A. and Nilsen, A.J. (2010) Das Korallenriff-Aquarium. Band 1 Grundlagen fuer den erfolgreichen Betrieb. Muenster: Natur und Tier Verlag GmbH Press.Google Scholar
Hartle-Mougiou, K., D'Angelo, C., Smith, E.G., Burt, J., West, P. and Wiedenmann, J. (2012) Diversity of zooxanthellae from corals and sea anemones after long-term aquarium culture. Journal of the Marine Biological Association of the United Kingdom DOI: 10.1017/S0025315411001159CrossRefGoogle Scholar
Hughes, T.P., Baird, A.H., Bellwood, D.R., Card, M., Connolly, S.R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J.B.C., Kleypas, J., Lough, J.M., Marshall, P., Nystroem, M., Palumbi, S.R., Pandolfi, J.M., Rosen, B. and Roughgarden, J. (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301, 929933.CrossRefGoogle ScholarPubMed
Hughes, T.P., Graham, N.A., Jackson, J.B., Mumby, P.J. and Steneck, R.S. (2010) Rising to the challenge of sustaining coral reef resilience. Trends in Ecology and Evolution 25, 633642.CrossRefGoogle Scholar
Jones, A. and Berkelmans, R. (2010) Potential costs of acclimatization to a warmer climate: growth of a reaf coral with heat tolerant us. sensitive symbiont types. PLoS ONE 5, e10437.CrossRefGoogle Scholar
Kenkel, C.D., Traylor, M.R., Wiedenmann, J., Salih, A. and Matz, M.V. (2011) Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress. Proceedings of the Royal Society B: Biological Sciences doi:10.1098/rspb.2010.2344.CrossRefGoogle ScholarPubMed
Kredel, S., Oswald, F., Nienhaus, K., Deuschle, K., Roecker, C., Wolff, M., Heilker, R., Nienhaus, G.U. and Wiedenmann, J. (2009) mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS ONE 4, e4391.CrossRefGoogle ScholarPubMed
Leewis, R.J. and Janse, M. (eds) (2008) Advances in coral husbandry in public aquariums. Arnhem: Burgers' Zoo Press.Google Scholar
Leutenegger, A., D'Angelo, C., Matz, M.V., Denzel, A., Oswald, F., Salih, A., Nienhaus, G.U. and Wiedenmann, J. (2007) It's cheap to be colorful. Anthozoans show a slow turnover of GFP-like proteins. FEBS Journal 274, 24962505.CrossRefGoogle ScholarPubMed
Meyer, E., Aglyamova, G.V., Wang, S., Buchanan-Carter, J., Abrego, D., Colbourne, J.K., Willis, B.L. and Matz, M.V. (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10, 219.CrossRefGoogle ScholarPubMed
Mrutzek, M. and Kokott, J. (2004) Ethanoldosierung im Aquarium. Der Meerwasseraquarianer 1/2004, 6071.Google Scholar
Oswald, F., Schmitt, F., Leutenegger, A., Ivanchenko, S., D'Angelo, C., Salih, A., Maslakova, S., Bulina, M., Schirmbeck, R., Nienhaus, G.U., Matz, M.V. and Wiedenmann, J. (2007) Contributions of host and symbiont pigments to the coloration of reef corals. FEBS Journal 274, 11021109.CrossRefGoogle Scholar
Patey, M.D., Rijkenberg, M.J.A., Statham, P.J., Stinchcombe, M.C., Achterberg, E.P. and Mowlem, M. (2008) Determination of nitrate and phosphate in seawater at nanomolar concentrations. Trends in Analytical Chemistry 27, 169182.CrossRefGoogle Scholar
Pawlowsky, E. (1994) Calcium im Korallenriff-Aquarium. Das Aquarium 28, 2835.Google Scholar
Smith, R.T., Pinzón, J.H. and LaJeunesse, T.C. (2009) Symbiodinium (Dinophyta) diversity and stability in aquarium corals. Journal of Phycology 45, 10301036.CrossRefGoogle ScholarPubMed
Veron, J.E., Hoegh-Guldberg, O., Lenton, T.M., Lough, J.M., Obura, D.O., Pearce-Kelly, P., Sheppard, C.R., Spalding, M., Stafford-Smith, M.G. and Rogers, A.D. (2009) The coral reef crisis: the critical importance of <350 ppm CO2. Marine Pollution Bulletin 58, 14281436.CrossRefGoogle ScholarPubMed
Weis, V.M., Davy, S.K., Hoegh-Guldberg, O., Rodriguez-Lanetty, M. and Pringle, J.R. (2008) Cell biology in model systems as the key to understanding corals. Trends in Ecology and Evolution 23, 369376.CrossRefGoogle ScholarPubMed
Wiedenmann, J. (2005) Die Wichtigkeit von Experimenten und ihrer Interpretation—Eine kritische Betrachtung am Beispiel der Ethanoldosierung. Der Meerwasseraquarianer 1/2005, 47.Google Scholar
Wiedenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Rocker, C., Salih, A., Spindler, K.D. and Nienhaus, G.U. (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proceedings of the National Academy of Sciences of the United States of America 101, 1590515910.CrossRefGoogle ScholarPubMed
Wiedenmann, J., Schenk, A., Rocker, C., Girod, A., Spindler, K.D. and Nienhaus, G.U. (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proceedings of the National Academy of Sciences of the United States of America 99, 1164611651.CrossRefGoogle ScholarPubMed