Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T21:32:41.775Z Has data issue: false hasContentIssue false

Tests of microstructure reconstruction by forward modeling of high energy X-ray diffraction microscopy data

Published online by Cambridge University Press:  29 February 2012

C. M. Hefferan*
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
S. F. Li
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
J. Lind
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
R. M. Suter
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
*
a)Author to whom correspondence should be addressed. Electronic mail: cheffera@andrew.cmu.edu

Abstract

Verification tests of the forward modeling technique for near-field high energy X-ray diffraction microscopy are conducted using two simulated microstructures containing uniformly distributed orientations. Comparison between the simulated and reconstructed microstructures is examined with consideration to both crystallographic orientation and spatial geometric accuracy. To probe the dependence of results on experimental parameters, simulated data sets use two different detector configurations and different simulated experimental protocols; in each case, the parameters mimic the experimental geometry used at Advanced Photon Source beamline 1-ID. Results indicate that element orientations are distinguishable to less than 0.1°, while spatial geometric accuracy is limited by the detector resolution.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B., Kunze, K., and Wright, S. I. (1993). “Orientation imaging: The emergence of a new microscopy,” Metall. Trans. A MTTABN 24, 819831.10.1007/BF02656503CrossRefGoogle Scholar
Cho, J. -H., Rollett, A. D., and Oh, K. H. (2004). “Determination of volume fractions of texture components with standard distributions in Euler space,” Metall. Mater. Trans. A MMTAEB 35A, 10751086.CrossRefGoogle Scholar
Larson, B. C., Yang, W., Ice, G. E., Budai, J. D., and Tischler, J. Z. (2002). “Three-dimensional X-ray structural microscopy with submicrometre resolution,” Nature (London) NATUAS 415, 887890.10.1038/415887aCrossRefGoogle ScholarPubMed
Lee, S. -B., Rollett, A. D., and Rohrer, G. S. (2007). “Three-dimensional microstructure reconstruction using FIB-OIM,” Mater. Sci. Forum MSFOEP 558–559, 915920.10.4028/www.scientific.net/MSF.558-559.915CrossRefGoogle Scholar
Lienert, U., Almer, J., Jakobsen, B., Pantleon, W., Poulsen, H. F., Hennessy, D., Xiao, C., and Suter, R. M. (2007). “3-dimensional characterization of polycrystalline bulk materials using high-energy synchrotron radiation,” Mater. Sci. Forum MSFOEP 539–543, 23532358.10.4028/www.scientific.net/MSF.539-543.2353CrossRefGoogle Scholar
Lienert, U., Brandes, M. C., Bernier, J. V., Weiss, J., Shastri, S. D., Mills, M. J., and Miller, M. P. (2009). “In-situ single grain peak profile measurements on Ti-7Al during tensile deformation,” Mater. Sci. Eng., A MSAPE3 524, 4654.10.1016/j.msea.2009.06.047CrossRefGoogle Scholar
Ludwig, W., Schmidt, S., Lauridsen, E. M., and Poulsen, H. F. (2008). “X-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals,” J. Appl. Crystallogr. JACGAR 41, 302309.10.1107/S0021889808001684CrossRefGoogle Scholar
Poulsen, H. F. (2004). Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics, Springer Tracts in Modern Physics (Springer, Berlin), Vol. 205.CrossRefGoogle Scholar
Poulsen, H. F., Nielsen, S. F., Laurdisen, E. M., Schmidt, S., Suter, R. M., Lienert, U., Margulies, L., Lorentzen, T., and Juul Jensen, D. (2001). “Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders,” J. Appl. Crystallogr. JACGAR 34, 751756.10.1107/S0021889801014273CrossRefGoogle Scholar
Suter, R. M., Hefferan, C. M., Li, S. F., Hennessy, D., Xiao, C., Lienert, U., and Tieman, B. (2008). “Probing microstructure dynamics with X-ray diffraction microscopy,” J. Eng. Mater. Technol. JEMTA8 , 130, 021007.10.1115/1.2840965CrossRefGoogle Scholar
Suter, R. M., Hennessy, D., Xiao, C., and Lienert, U. (2006). “Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: Single crystal verification,” Rev. Sci. Instrum. RSINAK , 77, 123905.10.1063/1.2400017CrossRefGoogle Scholar
Uchic, M. D., Groeber, M. A., Dimiduk, D. M., and Simmons, J. P. (2006). “3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM,” Scr. Mater. SCMAF7 55, 2328.10.1016/j.scriptamat.2006.02.039CrossRefGoogle Scholar
Wright, S. I. and Adams, B. L. (1992). “Automatic-analysis of electron backscatter diffraction patterns,” Metall. Trans. A MTTABN 23, 759767.10.1007/BF02675553CrossRefGoogle Scholar