Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T23:21:10.969Z Has data issue: false hasContentIssue false

Associations between birth weight, preeclampsia and cognitive functions in middle-aged adults

Published online by Cambridge University Press:  14 October 2011

P. Factor-Litvak*
Affiliation:
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
N. Straka
Affiliation:
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
S. Cherkerzian
Affiliation:
Brigham & Women's Hospital Departments of Psychiatry and Medicine, Division of Women's Health, Connors Center for Women's Health & Gender Biology, Boston, MA, USA Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
M. Richards
Affiliation:
Medical Research Council (MRC) Unit for Lifelong Health and Aging, London, UK Department of Epidemiology and Public Health, University College London, London, UK
X. Liu
Affiliation:
Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
A. Sher
Affiliation:
ICSD.USA, Millburn NJ, USA
G. Neils
Affiliation:
Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
J. Goldstein
Affiliation:
Brigham & Women's Hospital Departments of Psychiatry and Medicine, Division of Women's Health, Connors Center for Women's Health & Gender Biology, Boston, MA, USA Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA Department of Psychiatry, Division of Psychiatric Neuroscience, Massachusetts General Hospital, Boston, MA, USA
*
*Address for correspondence: Dr P. Factor-Litvak, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA. (Email prf1@columbia.edu)

Abstract

Both reductions in birth weight and preeclampsia (PE) have been associated with decrements in scores on tests of intelligence in children and adolescents. We examined whether these decrements persist into middle adulthood and expand into other domains of cognitive functioning. Using data from the Early Determinants of Adult Health project and from the ancillary project, Fetal Antecedents of Major Depression and Cardiovascular Disease, we selected term same-sex sibling sets or singletons from these sets, from the New England Family Study (NEFS) and the Child Health and Development Studies (CHDS), discordant on either fetal growth or PE, to test the hypotheses that prenatal exposure to inflammation was associated with decrements in attention, learning and executive function 40 years later. Exposure was defined as a continuous measure of percentile birth weight for gestational age, reduced fetal growth (<20th percentile of birth weight for gestational age) or maternal PE. Given that the sample was comprised, in part, of sibling sets, the analyses were performed using mixed models to account for the inter-sibling correlations. Analyses were performed separately by study site (i.e. NEFS and CHDS). We found few statistically significant associations (suggesting a possible type II error) consistent with previous literature, suggesting that the associations with low birth weight do not persist into midlife. We discuss the possible reasons for the lack of associations, which include the possible mediating effects of the postnatal environment.

Type
Original Articles
Copyright
Copyright © Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Breslau, N. Psychiatric sequelae of low birth weight. Epidemiol Rev. 1995; 17, 96106.Google Scholar
2. Rieder, RO, Broman, SH, Rosenthal, D. The offspring of schizophrenics: II. Perinatal factors and IQ. Arch Gen Psychiatry. 1977; 34, 789799.Google Scholar
3. Many, A, Fattal, A, Leitner, Y, Kupfermine, MJ, Harel, S, Jaffa, A. Neurodevelopmental and cognitive assessment of children born growth restricted to mothers with and without preeclampsia. Hypertens Pregnancy. 2003; 22, 2529.Google Scholar
4. Many, A, Fattal-Valevski, A, Leitner, Y. Neurodevelopmental and cognitive assessment of 6-year old children born growth restricted. Int J Gynecol Obstet. 2005; 89, 5556.Google Scholar
5. Ehrenstein, V, Rothman, KJ, Pedersen, L, Hatch, EE, Sorensen, HT. Pregnancy-associated hypertensive disorders and adult cognitive function among Danish conscripts. Amer J Epidemiol. 2009; 170, 10251031.Google Scholar
6. Ounsted, MK, Moar, VA, Good, FJ, Redman, CWG. Hypertension during pregnancy with and without specific treatment; the development of children at the age of four years. Brit J Obstet Gynecol. 1980; 87, 1924.Google Scholar
7. Ounsted, M, Cockburn, J, Moar, VA, Redman, CWG. Maternal hypertension with superimposed pre-eclampsia: effects on child development at 7.5 years. Brit J Obstet Gynecol. 1983; 90, 644649.Google Scholar
8. Seidman, DS, Laor, A, Gale, R, et al. . Pre-eclampsia and offspring's blood pressure, cognitive ability and physical development at 17-years-of-age. Brit J Obstet Gynecol. 1991; 98, 10091014.Google Scholar
9. Klein, NK, Hack, M, Breslau, N. Children who were very low birth weight: development and academic achievement at nine years of age. J Dev Behav Pediatr. 1989; 10, 3237.Google Scholar
10. Breslau, N, Delrotto, J, Brown, GG, et al. . A gradient relationship between low birth weight and IQ at age 6 years. Arch Pediatr Adolesc Med. 1994; 148, 377383.Google Scholar
11. Breslau, N, Chilcoat, H, DelDotto, J, Andreski, P, Brown, G. Low birth weight and neurocognitive status at six years of age. Biol Psychiatry. 1996; 40, 389397.Google Scholar
12. Petersen, M, Greisen, G, Kovacs, R, Munck, H, Friis-Hansen, B. Status at four years of age in 280 children weighing 2300 g or less at birth. Dan Med Bull. 1990; 37, 546552.Google Scholar
13. Mutch, L, Leyland, A, McGee, A. Patterns of neuropsychological function in a low-birthweight population. Dev Med Child Neurol. 1993; 35, 943956.Google Scholar
14. Rikards, AL, Kitchen, WH, Doyle, LW, et al. . Cognition, school performance and behavior in very low birth weight and normal birth weight children at 8 years of age: a longitudinal study. J Dev Behav Pediatr. 1993; 14, 363368.Google Scholar
15. Roth, SC, Baudin, J, McCormick, DC, et al. . Relation between ultrasound appearance of the brain of very preterm infants and neurodevelopmental impairment at eight years. Dev Med Child Neurol. 1993; 35, 755768.Google Scholar
16. Matte, TD, Bresnahan, M, Begg, M, Susser, E. Influence of variation in birth weight within normal range and within sibships on IQ at age 7 years: cohort study. Br Med J. 2001; 323, 310314.Google Scholar
17. Hardy, JB, Mellits, ED. Relationship of low birth weight to maternal characteristics of age, parity, education and body size. In The Epidemiology of Prematurity: Epidemiology Workshop, National Institute of Child Health and Development, 1976 (ed. Reed DM), 1977. Urban and Schwarzenberg: Baltimore.Google Scholar
18. Sorensen, HT, Sabroe, S, Olsen, J, et al. . Birth weight and cognitive function in young adult life: historical cohort study. Br Med J. 1997; 315, 401403.Google Scholar
19. Richards, M, Hardy, R, Kuh, D, Wadsworth, ME. Birth weight and cognitive function in the British 1946 birth cohort: longitudinal population based study. Br Med J. 2001; 322, 199202.Google Scholar
20. Collaer, ML, Hines, M. Human behavioral sex differences: a role for gonadal hormones during early development? Psychol Bull. 1995; 118, 55107.Google Scholar
21. Goldstein, JM, Seidman, LJ, Goodman, JM, et al. . Are there sex differences in neuropsychological functions among patients with schizophrenia? Amer J Psychiatry. 1998; 155, 13581364.Google Scholar
22. Goldstein, JM, Seidman, LJ, Santangelo, S, Knapp, P, Tsuang, MT. Are schizophrenic men at higher risk for developmental deficits than schizophrenic women? Implications for adult neuropsychological function. J Psychiatr Res. 1994; 28, 483489.Google Scholar
23. Goldstein, JM, Walder, DJ. Sex differences in schizophrenia: the case for developmental origins and etiological implications. In The Early Course of Schizophrenia (eds. Sharma T, Harvey P), 2006, pp. 147173. Oxford University Press, United Kingdom.Google Scholar
24. Goldstein, JM, Seidman, LJ, Horton, NJ, et al. . Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex. 2001; 11, 490497.Google Scholar
25. Nunez, JL, McCarthy, MM. Sex differences and hormonal effects in a model of preterm infant brain injury. Ann NY Acad Sci. 2003; 1008, 281284.Google Scholar
26. Lauterbach, MD, Raz, S, Sander, CJ. Neonatal hypoxic risk in preterm birth infants: the influence of sex and severity of respiratory distress on cognitive recovery. Neuropsychology. 2001; 15, 411420.Google Scholar
27. Clark, AS, Goldman-Rakic, PS. Gonadal hormones influence the emergence of cortical function in nonhuman primates. Behav Neurosci. 1989; 103, 12871295.Google Scholar
28. Oken, E, Kleinman, KP, Rich-Edwards, J, Gillman, MW. A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatr. 2003; 3, 6.Google Scholar
29. National High Blood Pressure Education Program Working Group. Report on high blood pressure in pregnancy. Am J Obstet Gynecol. 1990; 163, 16911712.Google Scholar
30. Seidman, LJ, Breiter, HC, Goodman, JM, et al. . A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands. Neuropsychology. 1998; 12, 505518.Google Scholar
31. Delis, DC, Kramer, JH, Kaplan, E, Ober, BA. California Verbal Learning Test, 2nd edn (CVLT-II), 2000. Psychological Corporation: San Antonio, TX.Google Scholar
32. Bolla, KI, Lindgren, KN, Bonaccorsy, C, Bleecker, ML. Predictors of verbal fluency (FAS) in the healthy elderly. J Clin Psychol. 1990; 45, 623628.Google Scholar
33. Wechsler, D. Wechsler Adult Intelligence Scale, 3rd edn (WAIS-III), 1997. Psychological Corporation, San Antonio, TX.Google Scholar
34. Usui, N, Haji, T, Maruyama, M, et al. . Cortical areas related to performance of WAIS digit symbol test: a functional imaging study. Neurosci Lett. 2009; 463, 15.Google Scholar
35. First, MB, Gibbon, M, Spitzer, RL, Williams, JBW, Benjamin, LS. Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II) 1997. American Psychiatric Press, Inc., Washington, DC.Google Scholar
36. Myrianthopoulos, NC, French, KS. An application of the US bureau of the census socioeconomic index to a large diversified patient population. Soc Sci Med. 1968; 2, 283299.Google Scholar
37. Gelman, A, Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models, 2006. Cambridge University Press, New York.Google Scholar
38. Hutcheon, JA, Platt, RW. The missing data problem in birth weight percentiles and thresholds for “small-for-gestational-age”. Amer J Epidemiol. 2008; 167, 786792.Google Scholar
39. Shenkin, SD, Starr, JM, Deary, IJ. Birth weight and cognitive ability in childhood: a systematic review. Psychol Bull. 2004; 130, 9891013.Google Scholar
40. Jefferis, BJ, Power, C, Hertzman, C. Birth weight, childhood socioeconomic environment and cognitive development in the 1958 British birth cohort study. Br Med J. 2002; 325, 305310.Google Scholar
41. Eriksen, W, Sundet, JM, Tambs, K. Birth weight standardized to gestational age and intelligence in young adulthood: a register-based birth cohort study of male siblings. Amer J Epidemiol. 2010; 172, 530536.Google Scholar
42. Eide, MG, Oyen, N, Skjaerven, R, Bjerkedal, T. Associations of birth size, gestational age, and adult size with intellectual performance: evidence from a cohort of Norwegian men. Pediatr Res. 2007; 62, 636642.Google Scholar
43. Martyn, CN, Gale, CR, Sayer, AA, Fall, C. Growth in utero and cognitive function in adult life: follow up study of people born between 1920 and 1943. Br Med J. 1996; 312, 13931396.Google Scholar
44. Kaplan, GA, Turrell, G, Lynch, JW, et al. . Childhood socioeconomic position and cognitive function in adulthood. Int J Epidemiol. 2001; 30, 256263.Google Scholar
45. Susser, E, Eide, MG, Begg, M. Invited commentary: the use of sibship studies to detect familial confounding. Amer J Epidemiol. 2010; 172, 530536.Google Scholar
46. Schendel, D, Rice, C, Cunniff, C. The contribution of rare diseases to understanding the epidemiology of neurodevelopmental disabilities. Adv Exp Med Biol. 2010; 686, 433453.Google Scholar
47. Goldstein, JM, Lewine, RRJ. Overview of sex differences in schizophrenia: where have we been and where do we go from here? In Women and Schizophrenia (eds. Castle DJ, McGrath, Kulkarni J), 2000, pp. 111143. Cambridge University Press: Cambridge.Google Scholar
48. Goldstein, JM, Seidman, LJ, O'Brien, L, et al. . Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry. 2002; 59, 154164.Google Scholar
49. Anastario, M, Salafia, CM, Fitzmaurice, G, Goldstein, JM. Impact of fetal versus perinatal hypoxia on sex differences in childhood outcomes: developmental timing matters. Soc Psychiatry Psychiatr Epidemiol, doi:10.1007/S00127-011-0353-0.Google Scholar
50. De Courten-Myers, GM. The human cerebral cortex: gender differences in structure and function. J Neuropath Exp Neurol. 1999; 58, 217226.Google Scholar
51. Resnick, SM, Berenbaum, SA, Gottesman, II, Bouchard, TJ Jr. Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia. Dev Psychol. 1986; 22, 191198.Google Scholar
52. Murphy, DGM, Allen, G, Haxby, JV, et al. . The effects of sex steroids, and the X chromosome on female brain function: a study of the neuropsychology of Turner syndrome. Neuropsychologia. 1994; 32, 13091323.Google Scholar
53. Schumacher, M, Legros, JJ, Balthazart, J. Steroid hormones, behavior and sexual dimorphism in animals and men: the nature–nuture controversy. Exp Clin Endocrinol. 1987; 90, 129156.Google Scholar
54. Raz, S, Lauterbach, MD, Hopkins, TL, et al. . A female advantage in cognitive recovery from early cerebral insult. Dev Psychol. 1995; 31, 958966.Google Scholar
55. Bowers, JM, Waddell, J, McCarthy, MM. A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol Sex Differ. 2010; 22, 821.Google Scholar
56. Zhang, JM, Konkle, AT, Zup, SL, McCarthy, MM. Impact of sex and hormones on new cells in the developing rat hippocampus: a novel source of sex dimorphism? Eur J Neurosci. 2008; 27, 791800.Google Scholar
57. Benes, FM, Turtle, M, Khan, Y, Farol, P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry. 1994; 51, 477484.Google Scholar
58. Jernigan, TL, Trauner, DA, Hesselink, JR, Tallal, PA. Maturation of human cerebrum observed in vivo during adolescence. Brain. 1991; 114, 20372049.Google Scholar
59. Giedd, JN, Snell, JW, Lange, N, et al. . Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex. 1996; 6, 551560.Google Scholar
60. Witelson, SF. Neural sexual mosaicism: sexual differentiation of the human temporo-parietal region for functional asymmetry. Psychoneuroendocrinology. 1991; 16, 131153.Google Scholar
61. Saykin, AJ, Gur, RC, Gur, RE, et al. . Normative neuropsychological test performance: effects of age, education, gender and ethnicity. Appl Neuropsychol. 1995; 2, 7985.Google Scholar
62. Gur, RC, Turetsky, BI, Matsui, M, et al. . Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci. 1999; 19, 40654072.Google Scholar
63. Harasty, J, Double, KL, Halliday, GM, Kril, JJ, McRitchie, DA. Language-associated cortical regions are proportionally larger in the female brain. Arch Neurol. 1997; 54, 171176.Google Scholar
64. Singh-Manoux, A, Richards, M, Marmot, M. Socioeconomic position across the lifescourse: how does it relate to cognitive function in mid-life? Ann Epidemiol. 2005; 15, 572578.Google Scholar
65. Grunau, RE, Whitfield, MF, Fay, TB. Psychosocial and academic characteristics of extremely low birth weight (⩽800 g) adolescents who are free of major impairment compared with term-born control subjects. Pediatrics. 2004; 114, e725e732.Google Scholar
66. Taylor, HG, Hack, M, Klein, NK. Attention deficits in children with <750 gm birth weight. Child Neuropsychol. 1998; 4, 2134.Google Scholar
67. Elgren, I, Lundervold, AJ, Sommerfelt, K. Aspects of inattention in low birth weight children. Ped Neurol. 2004; 30, 9298.Google Scholar
68. Martel, MM, Lucia, VC, Nigg, JT, Breslau, N. Sex differences in the pathway from low birth weight to inattention/hyperactivity. J Abnorm Child Psychol. 2007; 35, 8796.Google Scholar
69. Factor-Litvak, P, Sher, A. Invited commentary: coming out of the box. Amer J Epidemiol. 2009; 169, 11791181.Google Scholar
Supplementary material: File

Factor-Litvak Supplementary Material

Factor-Litvak Supplementary Material

Download Factor-Litvak Supplementary Material(File)
File 30.7 KB