Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T18:10:34.328Z Has data issue: false hasContentIssue false

Characterization of Highly-Oriented Ferroelectric PbxBa1−x TiO3 Thin Films Grown by Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  03 March 2011

Mohamed Y. El-Naggar
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125
David A. Boyd
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125
David G. Goodwin
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

PbxBa1−xTiO3 (0.2 ⩽ x ⩽ 1) thin films were deposited on single-crystal MgO as well as amorphous Si3N4/Si substrates using biaxially textured MgO buffer templates, grown by ion beam-assisted deposition (IBAD). The ferroelectric films were stoichiometric and highly oriented, with only (001) and (100) orientations evident in x-ray diffraction (XRD) scans. Films on biaxially textured templates had smaller grains (60 nm average) than those deposited on single-crystal MgO (300 nm average). Electron backscatter diffraction (EBSD) has been used to study the microtexture on both types of substrates and the results were consistent with x-ray pole figures and transmission electron microscopy (TEM) micrographs that indicated the presence of 90° domain boundaries, twins, in films deposited on single-crystal MgO substrates. In contrast, films on biaxially textured substrates consisted of small single-domain grains that were either c or a oriented. The surface-sensitive EBSD technique was used to measure the tetragonal tilt angle as well as in-plane and out-of-plane texture. High-temperature x-ray diffraction (HTXRD) of films with 90° domain walls indicated large changes, as much as 60%, in the c and a domain fractions with temperature, while such changes were not observed for PbxBa1−xTiO3 (PBT) films on biaxially textured MgO/Si3N4/Si substrates, which lacked 90° domain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Krulevitch, P., Lee, A.P., Ramsey, P.B., Trevino, J.C., Hamilton, J. and Northrup, M.A.: Thin film shape memory alloy microactuators. J. Microelectromech. Syst. 5(4), 270282(1996).CrossRefGoogle Scholar
2Shirane, G., Hoshino, S. and Suzuki, K.: Crystal structures of lead titanate and of lead–barium titanate. J. Phys. Soc. Jpn. 5(6), 453455(1950).CrossRefGoogle Scholar
3Bhattacharya, K., DeSimone, A., Hane, K.F., James, R.D. and Palmstrom, C.J.: Tents and tunnels on martensitic films. Mater. Sci. Eng. A, Struct. Mater. Properties Microstruct. Process. 275, 685689(1999).CrossRefGoogle Scholar
4Bhattacharya, K. and James, R.D.: A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids, 47(3), 531576(1999).CrossRefGoogle Scholar
5Chen, Y.F., Chen, J.X., Shun, L., Yu, T., Li, P., Ming, N.B. and Shi, L.J.: Preparation of epitaxial PbTiO3 thin-films by metalorganic vapor-phase epitaxy under reduced pressure. J. Cryst. Growth 146(1–4), 624629(1995).Google Scholar
6Kim, T.W. and Yom, S.S.: Microstructural, electrical, and transmittance properties of PbTiO3 films grown on p-InP (100) substrates at low temperature. J. Phys. Chem. Solids 60(7), 935942(1999).CrossRefGoogle Scholar
7Sun, L., Chen, Y.F., He, L., Ge, C.Z., Yu, T., Zhang, M.S., Ming, N.B., Ding, D.S. and Chang, Y.C.: Epitaxial growth of PbTiO3 thin film on (110)NdGaO3 substrate by metalorganic chemical vapor deposition. Z. Phys. B, Condensed Matter 102(4), 479482(1997).CrossRefGoogle Scholar
8Sun, L., Chen, Y.F., Yu, T., Ming, N.B., Ding, D.S. and Lu, Z.H.: (001) Textured PbTiO3 thin films grown on redoping n-Si by metalorganic chemical vapor deposition under reduced pressure. Appl. Phys. A, Mater. Sci. Processing 63(4), 381384(1996).Google Scholar
9Yoon, Y.S., Yom, S.S., Kim, T.W., Lee, D.U. and Kim, C.O.: Improvement of the crystallinity in PbTiO3 films grown on indium tin oxide-coated glass by metalorganic chemical vapor deposition using the continuous cooling process. Appl. Surf. Sci. 93(4), 285289(1996).CrossRefGoogle Scholar
10Yu, T., Chen, Y.F., Shun, L., Chen, J.X. and Ming, N.B.: Phase-transition of PbTiO3 polycrystalline thin-film prepared by metalorganic chemical vapor deposition on yttrium-stabilized zirconium. Solid State Commun. 96(7), 477480(1995).CrossRefGoogle Scholar
11Gao, Y., Bai, G., Merkle, K.L., Chang, H.L.M. and Lam, D.J.: Effects of substrate orientation and cooling rate on microstructure of PbTiO3 thin-films grown by metal–organic chemical vapor deposition. Thin Solid Films 235(1–2), 8695(1993).CrossRefGoogle Scholar
12Okada, M., Takai, S., Amemiya, M. and Tominaga, K.: Preparation of c -axis-oriented PbTiO3 thin-films by MOCVD under reduced pressure. Jpn. J. Appl. Phys. Part 1, Reg. Papers Short Notes Rev. Papers 28(6), 10301034(1989).CrossRefGoogle Scholar
13Dekeijser, M., Deleeuw, D.M., Vanveldhoven, P.J., Deveirman, A.E.M., Neerinck, D.G. and Dormans, G.J.M.: The structure of heteroepitaxial lead titanate layers grown by organometallic chemical vapor deposition. Thin Solid Films 266(2), 157167(1995).CrossRefGoogle Scholar
14Nakazawa, H., Yamane, H. and Hirai, T.: Metalorganic chemical vapor deposition of BaTiO3 films on MgO(100), Jpn. J. Appl. Phys. Part 1, Regular Papers Short Notes Rev. Papers 30(9B), 22002203(1991).CrossRefGoogle Scholar
15Zhang, J.M., Beetz, C.P. and Krupanidhi, S.B.: Photoenhanced chemical vapor deposition of BaTiO3. Appl. Phys. Lett. 65(19), 24102412(1994).Google Scholar
16Schafer, P., Ritter, S., Ganster, R., Ehrhart, P., Hoffmann, S. and Waser, R.: Preparation of (PbxBa1− x)TiO3 thin films by MOCVD using an aerosol-assisted liquid delivery system. Integrated Ferroelectrics 30(1–4), 165173(2000).CrossRefGoogle Scholar
17Brewer, R.T., Boyd, D.A., El-Naggar, M.Y., Boland, S.W., Park, Y.B., Haile, S.M., Goodwin, D.G. and Atwater, H.A.: Growth of biaxially textured BaxPb1− xTiO3 ferroelectric thin films on amorphous Si3N4. J. Appl. Phys. 97 3 2005 (Art. No. 034103).CrossRefGoogle Scholar
18Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H. and Hammond, R.H.: Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia. Appl. Phys. Lett. 71(20), 29552957(1997).CrossRefGoogle Scholar
19Chateigner, D., Wenk, H.R., Patel, A., Todd, M. and Barber, D.J.: Analysis of preferred orientations in PST and PZT thin films on various substrates. Integrated Ferroelectrics 19(1–4), 121140(1998).CrossRefGoogle Scholar
20Kim, C.J., Yoon, D.S., Lee, J.S., Choi, C.G., Lee, W.J. and No, K.: Electrical characteristics of (100), (111), and randomly aligned lead–zirconate–titanate thin films. J. Appl. Phys. 76(11), 74787482(1994).CrossRefGoogle Scholar
21Mansour, S. and Vest, R.: The dependence of ferroelectric and fatigue behaviors of PZT films on microstructure and orientation. Integrated Ferroelectrics 1, 5769(1992).CrossRefGoogle Scholar
22Tripathi, A. In situ diagnostics for metalorganic chemical vapor deposition of YBCO. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2001.Google Scholar
23Desisto, W.J. and Rappoli, B.J.: Ultraviolet absorption sensors for precursor delivery rate control for metalorganic chemical vapor deposition of multiple component oxide thin films. J. Crystal Growth 191(1–2), 290293(1998).CrossRefGoogle Scholar
24 Electron Backscatter Diffraction in Materials Science, edited by Schwartz, A.J., Kumar, M., and Adams, B.L. (Kluwer Academic, New York, 2000).Google Scholar
25 Properties of Crystalline Silicon, edited by Hull, R. (Institute of Electrical Engineers, London, U.K., 1999).Google Scholar
26 Thermal Expansion of Nonmetallic Solids, Vol. 13 of Thermophysical Properties of Matter, edited by Touloukian, Y., Kirby, R., Taylor, R., and Lee, T. (IFI/Plenum, New York, 1977).Google Scholar
27 Piezoelectric Ceramics, Vol. 3 of Non-metallic Solids, edited by Jaffe, B., Cook, W.R., and Jaffe, H.L. (Academic Press, New York, 1971).Google Scholar
28Burns, G.: Lattice modes in ferroelectric perovskites 2. Pb1−x BaxTiO3 including BaTiO3. Phys. Rev. B 10(5), 19511959(1974).CrossRefGoogle Scholar
29De Veirman, A., Cillessen, J., De Keijser, M., Wolf, R., Taylor, D., Staals, A. and Dormans, G.J.M.: In Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), pp. 329340.Google Scholar
30Hsu, W.Y. and Raj, R.: X-ray characterization of the domain-structure of epitaxial lead titanate thin-films on (001)-strontium-titanate. Appl. Phys. Lett. 67(6), 792794(1995).CrossRefGoogle Scholar
31Brewer, R. Quantitative Biaxial Texture Analysis with Reflection High-Energy Electron Diffraction for Ion Beam-Assisted Deposition of MgO and Heteroepitaxy of Perovskite Ferroelectrics; Ph.D. Thesis; California Institute of Technology, Pasadena, 2004.Google Scholar
32Ren, S.B., Lu, C.J., Liu, J.S., Shen, H.M. and Wang, Y.N.: Size-related ferroelectric-domain-structure transition in a polycrystalline PbTiO3 thin film. Phys. Rev. B 54(20), 1433714340(1996).CrossRefGoogle Scholar
33Speck, J. and Pompe, W.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory. J. Appl. Phys. 76(1), 466476(1994).CrossRefGoogle Scholar
34Speck, J., Seifert, A. and Pompe, W.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. II. Experimental verification and implications. J. Appl. Phys. 76(1), 477483(1994).Google Scholar
35Kwak, B.S., Erbil, A., Budai, J.D., Chisholm, M.F., Boatner, L.A. and Wilkens, B.J.: Domain formation and strain relaxation in epitaxial ferroelectric heterostructures. Phys. Rev. B 49(21), 1486514879(1994).Google Scholar
36Speck, J., Daykin, A. and Seifert, A.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. III. Interfacial defects and domain misorientations. J. Appl. Phys. 78(3), 16961706(1995).CrossRefGoogle Scholar
37Foster, C., Pompe, W., Daykin, A. and Speck, J.: Relative coherency strain and phase transformation history in epitaxial ferroelectric thin films. J. Appl. Phys. 79(3), 14051415(1996).CrossRefGoogle Scholar
38Pertsev, N. and Zembilgotov, A.: Energetics and geometry of 90-degree domain structures in epitaxial ferroelectric and ferroelastic films. J. Appl. Phys. 78(10), 61706180(1995).CrossRefGoogle Scholar
39Pertsev, N. and Zembilgotov, A.: Domain populations in epitaxial ferroelectric thin films: Theoretical calculations and comparison with experiment. J. Appl. Phys. 80(11), 64016406(1996).CrossRefGoogle Scholar
40Alpay, S.P. and Roytburd, A.L.: Thermodynamics of polydomain heterostructures. III. Domain stability map. J. Appl. Phys. 83(9), 47144723(1998).CrossRefGoogle Scholar
41Shirane, G., Hoshino, S. and Suzuki, K.: X-ray study of the phase transition in lead titanate. Phys. Rev. 80(6), 11051106(1950).CrossRefGoogle Scholar