Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-16T23:28:35.256Z Has data issue: false hasContentIssue false

Organic thin film transistors: From theory to real devices

Published online by Cambridge University Press:  03 March 2011

Gilles Horowitz*
Affiliation:
ITODYS, CNRS-UMR 7086, Université Denis-Diderot, 1 rue Guy de la Brosse, 75005 Paris, France
Get access

Abstract

The organic thin-film transistor (OTFT) is now a mature device that has developed tremendously during the last twenty years. The aim of this paper is to update previous reviews on that matter that have been published in the past. The operating mode of OTFTs is analyzed in view of recent model development. This mainly concerns the distribution of charges in the conducting channel and problems connected with contact resistance. We also delineate what differentiates n- and p-type semiconductors, and show how this concept differs from what it covers in conventional semiconductors. In the chapter devoted to fabrication techniques, emphasis is placed on solution-based techniques and particularly printing processes. Similarly, soluble materials are given a prominent place in the section dedicated to the performance of devices. Finally, special attention is given to devices at the nanoscale level, which demonstrate a new route toward molecular electronics.

Type
Reviews—Organic Electronics Special Section
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lilienfeld, J.E. (United States of America, 1930)Google Scholar
2.Kahng, D. and Atalla, M.M.: in IRE Solid-State Devices Research Conference (Carnegie Institute of Technology, Pittsburgh, PA, 1960).Google Scholar
3.Spear, W.E. and Le Comber, P.G.: Investigation of the localised state distribution in amorphous Si films, J. Non-Cryst. Solids 8–10, 727 (1972).CrossRefGoogle Scholar
4.Neudeck, G.W. and Malhotra, A.K.: An amorphous silicon thin-film transistor. Solid-State Electron. 19, 721 (1976).CrossRefGoogle Scholar
5.Weimer, P.K: The TFT—A new thin-film transistor, Proc. IRE 50, 1462 (1962).CrossRefGoogle Scholar
6.Pope, M. and Swenberg, C.E., Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999)CrossRefGoogle Scholar
7.Barbe, D.F. and Westgate, C.R.: Surface state parameters of metal-free phthalocyanine single crystals. J. Phys. Chem. Solids 31, 2679 (1970).CrossRefGoogle Scholar
8.Petrova, M.L. and Rozenshtein, L.D.: Field effect in the organic semiconductor chloranil. Fiz. Tverd. Tela (Soviet Phys. Solid State) 12, 961 (1970).Google Scholar
9.Ebisawa, F., Kurokawa, T. and Nara, S.: Electrical properties of polyacetylene-polysiloxane interface. J. Appl. Phys. 54, 3255 (1983).CrossRefGoogle Scholar
10.Tsumura, A., Koezuka, K. and Ando, T.: Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49, 1210 (1986).CrossRefGoogle Scholar
11.Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K. and Heeger, A.: Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 00, 578 (1977).CrossRefGoogle Scholar
12.Horowitz, G., Fichou, D., Peng, X.Z., Xu, Z.G. and Garnier, F.: A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Commun. 72, 381 (1989).CrossRefGoogle Scholar
13.Tang, C.W. and van Slyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987).CrossRefGoogle Scholar
14.Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L. and Holmes, A.B.: Light-emitting diodes based on conjugated polymers. Nature 341, 539 (1990).CrossRefGoogle Scholar
15.Katz, H.E.: Organic molecular solids as thin film transistor semiconductors. J. Mater. Chem. 7, 369 (1997).CrossRefGoogle Scholar
16.Brown, A.R., Jarrett, C.P., de Leeuw, D.M. and Matters, M.: Field-effect transistors made from solution-processed organic semiconductors. Synth. Metal 88, 37 (1997).CrossRefGoogle Scholar
17.Garnier, F.: Thin-film transistors based on organic conjugated semiconductors. Chem. Phys. 227, 253 (1998).CrossRefGoogle Scholar
18.Horowitz, G.: Organic field-effect transistors. Adv. Mater. 10, 365 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
19.Dimitrakopoulos, C.D. and Malenfant, P.R.L.: Organic thin film transistors for large area electronics. Adv. Mater. 14, 99 (2002).3.0.CO;2-9>CrossRefGoogle Scholar
20.Kahn, A., Koch, N. and Gao, W.: Electronic structure and electrical properties of interfaces between metals and p-conjugated molecular films. J. Polym. Sci., Part B: Polymer Physics 41, 2529 (2003).CrossRefGoogle Scholar
21.Servet, B., Horowitz, G., Ries, S., Lagorsse, O., Alnot, P., Yassar, A., Deloffre, F., Srivastava, P., Hajlaoui, R., Lang, P. and Garnier, F.: Polymorphism and charge transport in vacuum-evaporated sexithiophene films. Chem. Mater. 6, 1809 (1994).CrossRefGoogle Scholar
22.Garnier, F., Yassar, A., Hajlaoui, R., Horowitz, G., Deloffre, F., Servet, B., Ries, S. and Alnot, P.: Molecular engineering of organic semiconductors—design of self-assembly properties in conjugated thiophene oligomers. J. Am. Chem. Soc. 115, 8716 (1993).CrossRefGoogle Scholar
23.Minakata, T., Nagoya, I. and Ozaki, M.: Highly ordered and conducting thin film of pentacene doped with iodine vapor. J. Appl. Phys. 69, 7354 (1991).CrossRefGoogle Scholar
24.Dimitrakopoulos, C.D., Brown, A.R. and Pomp, A.: Molecular-beam deposited thin-films of pentacene for organic-field effect transistor applications. J. Appl. Phys. 80, 2501 (1996).CrossRefGoogle Scholar
25.Tanase, C., Meijer, E.J., Blom, P.W.M. and de Leeuw, D.M.: Local charge-carrier mobility in disordered organic field-effect transistors. Org. Electron . 4, 33 (2003).CrossRefGoogle Scholar
26.Sze, S.M.: Physics of Semiconductor Devices, 2nd ed. (John Wiley, New York, 1981)Google Scholar
27.Mott, N.F. and Gurney, R.W.: Electronic Processes in Ionic Crystals (Clarendon Press, Oxford, U.K., 1940)Google Scholar
28.Dodabalapur, A., Torsi, L. and Katz, H.E.: Organic transistors: Two-dimensional transport and improved electrical characteristics. Science 268, 270 (1995).CrossRefGoogle ScholarPubMed
29.Horowitz, G., unpublished.Google Scholar
30.Granstrom, E.L. and Frisbie, C.D.: Field effect conductance measurements on thin crystals of sexithiophene. J. Phys. Chem. B 103, 8842 (1999).CrossRefGoogle Scholar
31.Kiguchi, M., Nakayama, M., Fujiwara, K., Ueno, K., Shimada, T., and Saiki, K.: Accumulation and depletion layer thicknesses in organic field effect transistors. Jpn. J. Appl. Phys. Part 2 42, L1408 (2003).Google Scholar
32.Necliudov, P.V., Shur, M.S., Gundlach, D.J. and Jackson, T.N.: Modeling of organic thin film transistors of different designs. J. Appl. Phys. 88, 6594 (2000).CrossRefGoogle Scholar
33.Horowitz, G., Hajlaoui, M.E. and Hajlaoui, R.: Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 87, 4456 (2000).CrossRefGoogle Scholar
34.Street, R.A. and Salleo, A.: Contact effects in polymer transistors. Appl. Phys. Lett. 81, 2887 (2002).CrossRefGoogle Scholar
35.Shur, M.: Physics of semiconductor devices (Prentice-Hall, Englewood Cliffs, NJ, 1990)Google Scholar
36.Seshadri, K. and Frisbie, C.D.: Potentiometry of an operating organic semiconductor field-effect transistor. Appl. Phys. Lett. 78, 993 (2001).CrossRefGoogle Scholar
37.Burgi, L., Sirringhaus, H. and Friend, R.H.: Noncontact potentiometry of polymer field-effect transistors. Appl. Phys. Lett. 80, 2913 (2002).CrossRefGoogle Scholar
38.Burgi, L., Richards, T.J., Friend, R.H. and Sirringhaus, H.: Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 94, 6129 (2003).CrossRefGoogle Scholar
39.Necliudov, P.V., Shur, M.S., Gundlach, D.J. and Jackson, T.N.: Contact resistance extraction in pentacene thin film transistors. Solid-State Electron . 47, 259 (2003).CrossRefGoogle Scholar
40.Zaumseil, J., Baldwin, K.W. and Rogers, J.A.: Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J. Appl. Phys. 93, 6117 (2003).CrossRefGoogle Scholar
41.Klauk, H., Schmid, G., Radlik, W., Weber, W., Zhou, L., Sheraw, C.D., Nichols, J.A. and Jackson, T.N.: Contact resistance in organic thin film transistors. Solid-State Electron . 47, 297 (2003).CrossRefGoogle Scholar
42.Meijer, E.J., Gelinck, G.H., van Veenendaal, E., Huisman, B.H., de Leeuw, D.M. and Klapwijk, T.M.: Scaling behavior and parasitic series resistance in disordered organic field-effect transistors. Appl. Phys. Lett. 82, 4576 (2003).CrossRefGoogle Scholar
43.Luan, S. and Neudeck, G.W.: An experimental study of the source/drain parasitic resistance effects in amorphous silicon thin film transistors. J. Appl. Phys. 72, 766 (1992).CrossRefGoogle Scholar
44.Podzorov, V., Pudalov, V.M. and Gershenson, M.E.: Field-effect transistors on rubrene single crystals with parylene gate insulator. Appl. Phys. Lett. 82, 1739 (2003).CrossRefGoogle Scholar
45.Takeya, J., Goldmann, C., Haas, S., Pernstich, K.P., Ketterer, B. and Batlogg, B.: Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals. J. Appl. Phys. 94, 5800 (2003).CrossRefGoogle Scholar
46.Merlo, J.A. and Frisbie, C.D.: Field effect conductance of conducting polymer nanofibers. J. Polymer Sci., Part B: Polymer Physics 41, 2674 (2003).CrossRefGoogle Scholar
47.Koch, N., Kahn, A., Ghijsen, J., Pireaux, J-J., Schwartz, J., Johnson, R.L. and Elschner, A.: Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Appl. Surf. Sci. 82, 70 (2003).Google Scholar
48.Li, T., Ruden, P.P., Campbell, I.H. and Smith, D.L.: Investigation of bottom-contact organic field effect transistors by two-dimensional device modeling. J. Appl. Phys. 93, 4017 (2003).CrossRefGoogle Scholar
49.Tessler, N. and Roichman, Y.: Two-dimensional simulation of polymer field-effect transistor. Appl. Phys. Lett. 79, 2987 (2001).CrossRefGoogle Scholar
50.Watkins, N.J., Yan, L. and Gao, Y.: Electronic structure symmetry of interfaces between pentacene and metals. Appl. Phys. Lett. 80, 4384 (2002).CrossRefGoogle Scholar
51.Dimitrakopoulos, C.D., Kymissis, I., Purushothaman, S., Neumayer, D.A., Duncombe, P.R. and Laibowitz, R.B.: Low-voltage, high-mobility pentacene transistors with solution-processed high-dielectric constant insulators. Adv. Mater. 11, 1372 (1999).3.0.CO;2-V>CrossRefGoogle Scholar
52.Vissenberg, M.C.J.M. and Matters, M.: Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B 57, 12964 (1998).CrossRefGoogle Scholar
53.Tanase, C., Meijer, E.J., Blom, P.W.M., and de Leeuw, D.M.: Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601/1 (2003).CrossRefGoogle ScholarPubMed
54.Karl, N., Marktanner, J., Stehle, R. and Warta, W.: High-field saturation of charge carrier drift velocities in ultrapurified organic photoconductors. Synth. Metal 42, 2473 (1991).CrossRefGoogle Scholar
55.Farmakis, F.V., Brini, J., Kamarinos, G., Angelis, C.T., Dimitriadis, C.A. and Miyasaka, M.: On-current modeling of large-grain polycrystalline silicon thin-film transistors. IEEE Tans. Electron Devices 48, 701 (2001).CrossRefGoogle Scholar
56.Horowitz, G.: Tunnel current in organic field-effect transistors. Synth. Metal 138, 101 (2003).CrossRefGoogle Scholar
57.Horowitz, G. and Hajlaoui, M.E.: Grain size dependent mobility in polycrystalline organic field-effect transistors. Synth. Metal 122, 185 (2001).CrossRefGoogle Scholar
58.Knipp, D., Street, R.A., Völkel, A. and Ho, J.: Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport. J. Appl. Phys. 93, 347 (2003).CrossRefGoogle Scholar
59.Campbell, R.B., Robertson, J.M. and Trotter, J.: The crystal and molecular structure of pentacene. Acta Crystallogr. 14, 705 (1961).CrossRefGoogle Scholar
60.Campbell, R.B. and Robertson, J.M.: The crystal structure of hexacene, and a revision of the crystallographic data for tetracene ane pentacene. Acta Crystallogr. 15, 289 (1962).CrossRefGoogle Scholar
61.Gundlach, D.J., Kuo, C.C., Sheraw, C.D., Nichols, J.A. and Jackson, T.N.: Proc. SPIE. 3366, 54 (2001).CrossRefGoogle Scholar
62.Silinsh, E.A. and Càpek, V.Organic molecular crystals: Interaction, localization, and transport phenomena (AIP Press, New York, 1994)Google Scholar
63.Kenkre, V.M., Andersen, J.D., Dunlap, D.H. and Duke, C.B.: Unified theory of the mobilities of photoinjected electrons in naphthalene. Phys. Rev. Lett. 62, 1165 (1989).Google ScholarPubMed
64.Brédas, J.L., Beljonne, D., Cornil, J., Calbert, J.P., Shuai, Z. and Silbey, R.: Electronic structure of pi-conjugated oligomers and polymers: A quantum-chemical approach to transport properties. Synth. Metal 125, 107 (2002).CrossRefGoogle Scholar
65.Haddon, R.C., Chi, X., Itkis, M.E., Anthony, J.E., Eaton, D.L., Siegrist, T., Mattheus, C.C. and Palstra, T.T.M.Band electronic structure of one- and two-dimensional pentacene molecular crystals. J. Phys. Chem. B 106, 8288 (2002).Google Scholar
66.Cheng, Y.C., Silbey, R.J., Silva, D.A. Da, Calbert, J.P., Cornil, J. and Bredas, J.L.: Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation. J. Chem. Phys. 118, 3764 (2003).CrossRefGoogle Scholar
67.Giuggioli, L., Andersen, J.D. and Kenkre, V.M. Mobility theory of intermediate-bandwidth carriers in organic crystals: Scattering by acoustic and optical phonons. Phys. Rev. B 67,(2003)Google Scholar
68.Podzorov, V., Sysoev, S.E., Loginova, E., Pudalov, V.M. and Gershenson, M.E.: Single-crystal organic field effect transistors with the hole mobility ∼8 cm2/V s. Appl. Phys. Lett. 83, 3504 (2003).CrossRefGoogle Scholar
69.Comber, P.G. Le and Spear, W.E.: Electronic transport in amorphous silicon films. Phys. Rev. Lett. 25, 509 (1970).CrossRefGoogle Scholar
70.Horowitz, G., Hajlaoui, R. and Delannoy, P.: Temperature dependence of the field-effect mobility of sexithiophene: Determination of the density of traps. J. Phys. III France 5, 355 (1995).Google Scholar
71.Nelson, S.F., Lin, Y.Y., Gundlach, D.J. and Jackson, T.N.: Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854 (1998).CrossRefGoogle Scholar
72.Horowitz, G., Hajlaoui, R., Bourguiga, R. and Hajlaoui, M.: Theory of the organic field-effect transistor. Synth. Metal 101, 401 (1999).CrossRefGoogle Scholar
73.Garnier, F., Hajlaoui, R., Yassar, A. and Srivastava, P.: All-polymer field-effect transistor realized by printing techniques. Science 265, 1684 (1994).CrossRefGoogle ScholarPubMed
74.Bao, Z.N., Feng, Y., Dodabalapur, A., Raju, V.R. and Lovinger, A.J.: High-performance plastic transistors fabricated by printing techniques. Chem. Mater. 9, 1299 (1997).CrossRefGoogle Scholar
75.Rogers, J.A., Bao, Z.N., Makhija, A. and Braun, P.: Printing process suitable for reel-to-reel production of high-performance organic transistors and circuits. Adv. Mater. 11, 741 (1999).3.0.CO;2-L>CrossRefGoogle Scholar
76.Xia, Y. and Whitesides, G.M. Soft lithography. Angew. Chem. Int. Ed. 37, 550 (1998)3.0.CO;2-G>CrossRefGoogle Scholar
77.Hebner, T.R., Wu, C.C., Marcy, D., Lu, M.H. and Sturm, J.C.: Ink-jet printing of doped polymers for organic light-emitting devices. Appl. Phys. Lett. 72, 519 (1998).CrossRefGoogle Scholar
78.Yang, Y., Chang, S.C., Bharathan, J. and Liu, J.: Organic/polymeric electroluminescent devices processed by hybrid ink-jet printing. J. Mater. Sci.: Mater. Electron. 11, 89 (2000).Google Scholar
79.Yokoyama, O.: Active-matrix full color organic electroluminescent displays fabricated by ink-jet printing. Optronics 254, 119 (2003).Google Scholar
80.Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000).CrossRefGoogle ScholarPubMed
81.Blanchet, G.B., Loo, Y.L., Rogers, J.A., Gao, F. and Fincher, C.R.: Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl. Phys. Lett. 82, 463 (2003).CrossRefGoogle Scholar
82.Bartic, C., Jansen, H., Campitelli, A. and Borghs, S.: Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors. Org. Electron. 3, 65 (2002).CrossRefGoogle Scholar
83.Veres, J., Ogier, S.D., Leeming, S.W., Cupertino, D.C. and Khaffaf, S.M.: Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199 (2003).CrossRefGoogle Scholar
84.Bassler, H.: Charge transport in disordered organic photoconductors. Phys Status Solidi. 175, 15 (1993).CrossRefGoogle Scholar
85.Sirringhaus, H., Wilson, R.J., Friend, R.H., Inbasekaran, M., Wu, W., Woo, E.P., Grell, M. and Bradley, D.D.C.: Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77, 406 (2000).CrossRefGoogle Scholar
86.Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveldvoss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P. and de Leeuw, D.M.: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999).CrossRefGoogle Scholar
87.Sandberg, H.G.O., Frey, G.L., Shkunov, M.N., Sirringhaus, H., Friend, R.H., Nielsen, M.M. and Kumpf, C.: Ultrathin regioregular poly(3-hexyl thiophene) field-effect transistors. Langmuir 18, 10176 (2002).CrossRefGoogle Scholar
88.Wang, G.M., Swensen, J., Moses, D. and Heeger, A.J.: Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. J. Appl. Phys. 93, 6137 (2003).CrossRefGoogle Scholar
89.Kelley, T.W., Muyres, D.V., Baude, P.F., Smith, T.P., and Jones, T.D.: High performance organic thin film transistors, in Organic and Polymeric Materials and Devices, edited by Blom, P.W.M., Greenham, N.C., Dimitrakopoulos, C.D., and Frisbie, C.D.. (Mater. Res. Soc. Symp. Proc. 771, Warrendale, PA, 2003), p. 169.Google Scholar
90.Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Ponomarenko, S., Kirchmeyer, S. and Weber, W.: Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv. Mater. 15, 917 (2003).CrossRefGoogle Scholar
91.Gundlach, D.J., Lin, Y.Y., Jackson, T.N., Nelson, S.F. and Schlom, D.G.: Pentacene organic thin-film transistors—molecular ordering and mobility. IEEE Electron. Device Lett. 18, 87 (1997).CrossRefGoogle Scholar
92.Schoonveld, W.A., Stok, R.W., Weijtmans, J.W., Vrijmoeth, J., Wildeman, J. and Klapwijk, T.M.: Morphology of quaterthiophene thin films in organic field effect transistors. Synth. Metal 84, 583 (1997).CrossRefGoogle Scholar
93.Lin, Y.Y., Gundlach, D.J., Jackson, T.N. and Nelson, S.F.: Pentacene-based organic thin film transistors. IEEE Trans. Electron. Dev. 44, 1325 (1997).CrossRefGoogle Scholar
94.Facchetti, A., Mushrush, M., Katz, H.E. and Marks, T.J.: n -Type building blocks for organic electronics: A homologous family of fluorocarbon-substituted thiophene oligomers with high carrier mobility. Adv. Mater. 15, 33 (2003).Google Scholar
95.Garnier, F., Hajlaoui, R., Elkassmi, A., Horowitz, G., Laigre, L., Porzio, W., Armanini, M. and Provasoli, F.: Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem. Mater. 10, 3334 (1998).CrossRefGoogle Scholar
96.Katz, H.E., Li, W., Lovinger, A.J. and Laquindanum, J.: Solution-phase deposition of oligomeric TFT semiconductors. Synth. Metal 102, 897 (1999).CrossRefGoogle Scholar
97.Katz, H.E., Laquindanum, J.G. and Lovinger, A.J.: Synthesis, solubility, and field-effect mobility of elongated and oxa-substituted alpha,omega-dialkyl thiophene oligomers. Extension of “polar intermediate” synthetic strategy and solution deposition on transistor substrates. Chem. Mater. 10, 633 (1998).CrossRefGoogle Scholar
98.Edwards, J.H., Feast, W.J. and Bott, D.C.: Polymer 21, 595 (1980).CrossRefGoogle Scholar
99.Friend, R.H., Bradley, D.D.C. and Towsend, P.D.J. Phys. Appl. 20, 1367 (1987).Google Scholar
100.Brown, A.R., Pomp, A., de Leeuw, D.M., Klaassen, D.B.M., Havinga, E.E., Herwig, P. and Müllen, K.: Precursor route pentacene metal-insulator-semiconductor field-effect transistors. J. Appl. Phys. 79, 2136 (1996).CrossRefGoogle Scholar
101.Herwig, P.T. and Mullen, K.: A soluble pentacene precursor: Synthesis, solid-state conversion into pentacene and application in a field-effect transistor, Adv. Mater. 11, 480 (1999).3.0.CO;2-U>CrossRefGoogle Scholar
102.Afzali, A., Dimitrakopoulos, C.D. and Breen, T.L.: High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. J. Am. Chem. Soc. 124, 8812 (2002).CrossRefGoogle ScholarPubMed
103.Shtein, M., Gossenberger, H.F., Benziger, J.B. and Forrest, S.R.: Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition. J. Appl. Phys. 89, 1470 (2001).CrossRefGoogle Scholar
104.Shtein, M., Mapel, J., Benziger, J.B. and Forrest, S.R.: Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors. Appl. Phys. Lett. 81, 268 (2002).CrossRefGoogle Scholar
105.Horowitz, G., Garnier, F., Yassar, A., Hajlaoui, R. and Kouki, F.: Field-effect transistor made with a sexithiophene single-crystal. Adv. Mater. 8, 52 (1996).CrossRefGoogle Scholar
106.Horowitz, G., Hajlaoui, R. and Kouki, F.: An analytical model for the organic field-effect transistor in the depletion mode. Application to sexithiophene films and single crystals. Eur. Phys. J. Appl. Phys. 1, 361 (1998).CrossRefGoogle Scholar
107.de Boer, R.W.I., Klapwijk, T.M. and Morpurgo, A.F.: Field-effect transistors on tetracene single crystals. Appl. Phys. Lett. 83, 4345 (2003).CrossRefGoogle Scholar
108.Ichikawa, M., Yanagi, H., Shimizu, Y., Hotta, S., Suganuma, N., Koyama, T. and Taniguchi, Y.: Organic field-effect transistors made of epitaxially grown crystals of a thiophene/phenylene co-oligomer. Adv. Mater. 14, 1272 (2002).3.0.CO;2-F>CrossRefGoogle Scholar
109.Butko, V.Y., Chi, X. and Ramirez, A.P.: Free-standing tetracene single crystal field effect transistor. Solid State Commun. 128, 431 (2003).CrossRefGoogle Scholar
110.Jarrett, C.P., Pichler, K., Newbould, R. and Friend, R.H.: Transport studies in C-60 and C-60/C-70 thin-films using metal-insulator-semiconductor field-effect transistors. Synth. Metal 77, 35 (1996).CrossRefGoogle Scholar
111.Shimada, T. and Koma, A.: Electron spectroscopy of C-60 thin film FET structures. Jpn. J. Appl. Phys. Part 1 41, 2724 (2002).CrossRefGoogle Scholar
112.Kobayashi, S., Takenobu, T., Mori, S., Fujiwara, A. and Iwasa, Y.: Fabrication and characterization of C-60 thin-film transistors with high field-effect mobility. Appl. Phys. Lett. 82, 4581 (2003).CrossRefGoogle Scholar
113.Katz, H.E., Lovinger, A.J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.Y. and Dodabalapur, A.: A soluble and air-stable organic semiconductor with high electron mobility. Nature 404, 478 (2000).CrossRefGoogle ScholarPubMed
114.Malenfant, P.R.L., Dimitrakopoulos, C.D., Gelorme, J.D., Kosbar, L.L., Graham, T.O., Curioni, A. and Andreoni, W.: N-type organic thin-film transistor with high field-effect mobility based on a N,N′-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl. Phys. Lett. 80, 2517 (2002).CrossRefGoogle Scholar
115.Tada, H., Touda, H., Takada, M. and Matsushige, K.: Field-effect mobility of F16PcCu films in various gas atmospheres. J. Porphyr. Phthalocya. 3, 667 (1999).3.0.CO;2-Y>CrossRefGoogle Scholar
116.Hoshino, S., Nagamatsu, S., Chikamatsu, M., Misaki, M., Yoshida, Y., Tanigaki, N. and Yase, K.: LiF/Al bilayer source and drain electrodes for n-channel organic field-effect transistors. Synth. Metal 137, 953 (2003).CrossRefGoogle Scholar
117.Facchetti, A., Deng, Y., Wang, A.C., Koide, Y., Sirringhaus, H., Marks, T.J. and Friend, R.H. Tuning the semiconducting properties of sexithiophene by alpha, omega-substitution-alpha,omega-diperfluorohexylsexithiophene: The first n-type sexithiophene for thin-film transistors. Angew. Chem. Int. Ed. 39, 4547 (2000)3.0.CO;2-J>CrossRefGoogle Scholar
118.Meijer, E.J., De Leeuw, D.M., Setayesh, S., van Veenendaal, E., Huisman, B.H., Blom, P.W.M., Hummelen, J.C., Scherf, U. and Klapwijk, T.M.: Solution-processed ambipolar organic field-effect transistors and inverters. Nature Mater. 2, 678 (2003).CrossRefGoogle ScholarPubMed
119.Turner-Jones, E.T., Chyan, O.M. and Wrighton, M.S.: Preparation and characterization of molecule-based transistors with a 50 nm-source-drain separation with use of shadow deposition techniques: Toward faster, more sensitive molecule-based devices. J. Am. Chem. Soc. 109, 5526 (1987).CrossRefGoogle Scholar
120.Collet, J., Tharaud, O., Chapoton, A. and Vuillaume, D.: Low-voltage, 30 nm channel length, organic transistors with a self- assembled monolayer as gate insulating films. Appl. Phys. Lett. 76, 1941 (2000).CrossRefGoogle Scholar
121.Austin, M.D. and Chou, S.Y.: Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography. Appl. Phys. Lett. 81, 4431 (2002).CrossRefGoogle Scholar
122.Zhang, Y., Petta, J.R., Ambily, S., Shen, Y., Ralph, D.C. and Malliaras, G.G.: 30 nm channel length pentacene transistors. Adv. Mater. 15, 1632 (2003).CrossRefGoogle Scholar