Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T20:08:28.787Z Has data issue: false hasContentIssue false

Influence of the Shape and Size of ahe Laser Spot on the Spatial Distribution of the Plasma Plume

Published online by Cambridge University Press:  15 February 2011

A. Mele
Affiliation:
Dipartimento di Chimica, Universita’ di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
A. Giardini Guidont
Affiliation:
Dipartimento di Chimica, Universita’ di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
R. Kelly
Affiliation:
Dipartimento di Fisica, Universita’ di Trento, Povo (TN), Italy
A. Miotello
Affiliation:
Dipartimento di Fisica, Universita’ di Trento, Povo (TN), Italy
S. Orlando
Affiliation:
Istituto Materiali Speciali - C.N.R., Tito Scalo (PZ), Italy
Get access

Abstract

Pulsed laser deposition may be accomplished by irradiating a target with a high intensity laser pulse. The flux of particles moving from the target to the substrate obeys gas-dynamic laws when the density of the emitted particles exceeds ∼1 monolayer/(10 ns). The angular distribution of the plume, which depends on various factors, will strongly affect the deposit characteristics. It has been found that an intensified CCD camera can be successfully used to analyze laterally in two orthogonal directions the profile of the expanding plume. A marked influence of laser spot dimension and shape on plume dynamics is observed for laser ablation of a number of materials such as metals, semiconductors and high Tc superconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pulsed Laser Deposition of Thin Films - Chrisey, D.B. and Hubler, G.K. Eds.- John Wiley & Sons, New York (1994)Google Scholar
2 Saenger, K.L. “Angular Distribution of Ablated Material” p.199 in: Pulsed Laser Deposition of Thin Films - Chrisey, D.B. and Hubler, G.K. Eds.- John Wiley & Sons, New York (1994)Google Scholar
3 Kelly, R., Miotello, A., Braren, B., Gupta, A., and Casey, N., Nucl. Instr. Meth. B 65 (1992) 187 Google Scholar
4 Hattori, K., Okana, A., Nakay, Y., and Itoh, N., Phys. Rev. B 45 (1992) 8424 Google Scholar
5 Peterlongo, A., Miotello, A., and Kelly, R., Phys. Rev. E 50 (1994) 4716 Google Scholar
6 Kelly, R., Miotello, A., Appl. Surf. Sci. in pressGoogle Scholar
7 Dawson, J., Kaw, P., and Green, B., Phys. Fluids 12 (1969) 875 Google Scholar
8 Mele, A., Giardini Guidoni, A., Kelly, R., Miotello, A., Orlando, S., Teghil, R., Appl. Surf. Sci. in pressGoogle Scholar
9 Teghil, R., Santagata, A., Marotta, V., Orlando, S., Pizzella, G., Giardini Guidoni, A., and Mele, A., Appl. Surf. Sci.. 90 (1995) 505 Google Scholar
10 Singh, R.N. and Narayan, J., Phys. Rev. B 41 (1990) 8843 Google Scholar
11 Kools, J.C.S., Baller, T.S., DeZwart, S.T., and Dieleman, J., J. Appl. Phys 71 (1992) 4547 Google Scholar
12 Miotello, A., Kelly, R., Braren, B. and Otis, C. E., Appl. Phys. Lett. 61 (1992) 2784 Google Scholar
13 Kelly, R., Miotello, A., Braren, B. and Otis, C. E., Appl. Phys. Lett. 60 (1992) 2980 Google Scholar
14 Muenchausen, R.E., Hubbard, K.M., Foltyn, S., Esteer, R.G., Nogar, N.S., and Jenkins, C., Appl. Phys. Lett. 56 (1990) 578 Google Scholar