Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T07:22:04.269Z Has data issue: false hasContentIssue false

Mechanical property development in reactively sputtered tantalum carbide/amorphous hydrocarbon thin films

Published online by Cambridge University Press:  01 June 2006

Ryan D. Evans*
Affiliation:
The Timken Company, Canton, Ohio 44706; and Case Western Reserve University, Cleveland, Ohio 44106
Gary L. Doll
Affiliation:
The Timken Company, Canton, Ohio 44706
Jeffrey T. Glass
Affiliation:
Duke University, Durham, North Carolina 27708
*
a) Address correspondence to this author. e-mail: ryan.evans@timken.com
Get access

Abstract

Hardness, elastic modulus, and stress directly influence the ability of tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin films to enhance the wear-resistance of steel tribological component surfaces. Designed factorial experiments enabled an evaluation of the effects of acetylene flow rate (QC2H2), direct current bias voltage level (Vb), and substrate rotation rate (ωRot) during deposition on the mechanical properties of reactively sputtered TaC/a-C:H films. Significant relationships were found between compressive stress level and Vb, whereas hardness and elastic modulus were dependent primarily on Vb and secondarily on QC2H2 within the studied parameter space. It is proposed that effects of ion bombardment on the a-C:H phase during growth are responsible for property dependencies on Vb. Decreases in hardness and elastic modulus with increasing QC2H2 are attributed to increased hydrogen concentration and a concomitant decreased volume fraction of TaC crystallites in the films.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Doll, G.L. and Osborn, B.K.: Engineering surfaces of precision steel components, in 44th Annual Technical Conference Proceedings (Society of Vacuum Coaters, Philadelphia, PA, April 21–26, 2001).Google Scholar
2.Doll, G.L., Evans, R.D., and Johnson, S.P.: Providing oil-out protection to rolling element bearings with coatings, in 48th Annual Technical Conference Proceedings (Society of Vacuum Coaters, Denver, CO, April 23–28, 2005).Google Scholar
3.Rabinowicz, E.: Friction and Wear of Materials (John Wiley & Sons, New York, 1965).Google Scholar
4.Grischke, M., Bewilogua, K., Dimigen, H.: Preparation, properties and structure of metal containing amorphous hydrogenated carbon films. Mater. Manuf. Processes 8, 407 (1993).CrossRefGoogle Scholar
5.Strondl, C., Carvalho, N.M., De Hosson, J.Th.M., Krug, T.G.: Influence of energetic ion bombardment on W-C:H coatings deposited with W and WC targets. Surf. Coat. Technol. 200, 1142 (2005).CrossRefGoogle Scholar
6.Shi, B., Meng, W.J.: Intrinsic stresses and mechanical properties of Ti-containing hydrocarbon coatings. J. Appl. Phys. 94, 186 (2003).Google Scholar
7.Park, S.J., Lee, K.R., Ko, D.H., Eun, K.Y.: Microstructure and mechanical properties of WC-C nanocomposite films. Diamond Relat. Mater. 11, 1747 (2002).CrossRefGoogle Scholar
8.Shi, B., Meng, W.J., Rehn, L.E., Baldo, P.M.: Intrinsic stress development in Ti-C:H ceramic nanocomposite coatings. Appl. Phys. Lett. 81, 352 (2002).CrossRefGoogle Scholar
9.Strondl, C., Carvalho, N.M., De Hosson, J.Th.M., van der Kolk, G.J.: Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings. Surf. Coat. Technol. 162, 288 (2003).CrossRefGoogle Scholar
10.Klages, C.P. and Memming, R.: Microstructure and physical properties of metal-containing hydrogenated carbon films. Mater. Sci. Forum 52/53, 609 (1989).Google Scholar
11.van Duyn, W., van Lochem, B.: Chemical and mechanical characterization of WC:H amorphous layers. Thin Solid Films 181, 497 (1989).CrossRefGoogle Scholar
12.Bewilogua, K., Dimigen, H.: Preparation of W-C:H coatings by reactive magnetron sputtering. Surf. Coat. Technol. 61, 144 (1993).CrossRefGoogle Scholar
13.Meng, W.J., Gillispie, B.A.: Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings. J. Appl. Phys. 84, 4314 (1998).CrossRefGoogle Scholar
14.Precht, W., Czyzniewski, A.: Deposition and some properties of carbide/amorphous carbon nanocomposites for tribological application. Surf. Coat. Technol. 174/175, 979 (2003).CrossRefGoogle Scholar
15.Czyzniewski, A.: Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings. Thin Solid Films 433, 180 (2003).Google Scholar
16.Meng, W.J., Tittsworth, R.C., Rehn, L.E.: Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings. Thin Solid Films 377/378, 222 (2000).CrossRefGoogle Scholar
17.Feng, B., Cao, D.M., Meng, W.J., Rehn, L.E., Baldo, P.M., Doll, G.L.: Probing for mechanical and tribological anomalies in the TiC/amorphous hydrocarbon nanocomposite coating system. Thin Solid Films 398/399, 210 (2001).CrossRefGoogle Scholar
18.Dimigen, H., Klages, C.P.: Microstructure and wear behavior of metal-containing diamond-like coatings. Surf. Coat. Technol. 49, 543 (1991).Google Scholar
19.Meng, W.J., Curtis, T.J., Rehn, L.E., Baldo, P.M.: Plasma-assisted deposition and characterization of Ti-containing diamond-like carbon coatings. J. Appl. Phys. 83, 6076 (1998).CrossRefGoogle Scholar
20.Kulikovsky, V., Tarasenko, A., Fendrych, F., Jastrabik, L., Chvostova, D., Franc, F., Soukup, L.: The mechanical, tribological and optical properties of Ti-C:H coatings, prepared by dc magnetron sputtering. Diamond Relat. Mater. 7, 774 (1998).CrossRefGoogle Scholar
21.Zehnder, T., Schwaller, P., Munnik, F., Mikhailov, S., Patscheider, J.: Nanostructural and mechanical properties of nanocomposite nc-TiC/a-C:H films deposited by reactive unbalanced magnetron sputtering. J. Appl. Phys. 95, 4327 (2004).CrossRefGoogle Scholar
22.Monaghan, D.P., Teer, D.G., Logan, P.A., Efeoglu, I., Arnell, R.D.: Deposition of wear-resistant coatings based on diamond-like carbon by unbalanced magnetron sputtering. Surf. Coat. Technol. 60, 525 (1993).CrossRefGoogle Scholar
23.Strondl, C., van der Kolk, G.J., Hurkmans, T., Fleischer, W., Trinh, T., Carvalho, N.M., de Hosson, J.Th.M.: Properties and characterization of multilayers of carbides and diamond-like carbon. Surf. Coat. Technol. 142, 707 (2001).Google Scholar
24.Evans, R.D., Howe, J.Y., Bentley, J., Doll, G.L., Glass, J.T.: Influence of deposition parameters on the composition and structure of reactively sputtered nanocomposite TaC/a-C:H thin films. J. Mater. Res. 20, 2583 (2005).CrossRefGoogle Scholar
25.Montgomery, D.G.: Design and Analysis of Experiments, 5th ed. (John Wiley & Sons, New York, 2001).Google Scholar
26.Ohring, M.: The Materials Science of Thin Films (Academic Press, Boston, 1992).Google Scholar
27.Brantley, W.A.: Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44, 534 (1973).CrossRefGoogle Scholar
28.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
29.Ferrari, A.C., Kleinsorge, B., Morrison, N.A., Hart, A., Stolojan, V., Robertson, J.: Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. J. Appl. Phys. 85, 7191 (1999).CrossRefGoogle Scholar
30.Shi, B., Meng, W.J., Daulton, T.L.: Thermal expansion of Ti-containing hydrogenated amorphous carbon nanocomposite thin films. Appl. Phys. Lett. 85, 4352 (2004).CrossRefGoogle Scholar
31.Pierson, H.O.: Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (Noyes Publications, Westwood, NJ, 1996).Google Scholar
32.Tsui, T.Y., Oliver, W.C., Pharr, G.M.: Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11, 752 (1996).CrossRefGoogle Scholar
33.Cheng, Y.T., Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91 (2004).CrossRefGoogle Scholar
34.Windischmann, H.: An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 62, 1800 (1987).CrossRefGoogle Scholar
35.d’Heurle, F.M., Harper, J.M.E.: Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering. Thin Solid Films 171, 81 (1989).CrossRefGoogle Scholar
36.Knotek, O., Elsing, R., Kramer, G., Jungblut, F.: On the origin of compressive stress in PVD coatings: An explicative model. Surf. Coat. Technol. 46, 265 (1991).CrossRefGoogle Scholar
37.Nir, D.: Summary abstract: Energy dependence of the stress in diamond-like carbon films. J. Vac. Sci. Technol. A 4, 2954 (1986).CrossRefGoogle Scholar
38.Davis, C.A.: A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30 (1993).CrossRefGoogle Scholar
39.Anthony, T.R.: Stresses generated by impurities in diamond. Diamond Relat. Mater. 4, 1346 (1995).Google Scholar
40.Smith, D.L.: Thin-Film Deposition: Principles and Practice (McGraw Hill, Boston, 1995).Google Scholar
41.Zhang, S., Johnson, H.T., Wagner, G.J., Liu, W.K., Hsia, K.J.: Stress generation mechanisms in carbon thin films grown by ion-beam deposition. Acta Mater. 51, 5211 (2003).CrossRefGoogle Scholar
42.Jacob, W.: Surface reactions during growth and erosion of hydrocarbon films. Thin Solid Films 326, 1 (1998).Google Scholar
43.Ziegler, J.F.: The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
44.Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129 (2002).CrossRefGoogle Scholar
45.Veprek, S.: Electronic and mechanical properties of nanocrystalline composites when approaching molecular size. Thin Solid Films 297, 145 (1997).CrossRefGoogle Scholar
46.Yin, Y., McKenzine, D., Bilek, M.: Intrinsic stress induced by substrate bias in amorphous hydrogenated silicon thin films. Surf. Coat. Technol. 198, 156 (2005).Google Scholar
47.Paul, B.: Prediction of elastic constants of multiphase materials. Trans. AIME 218, 36 (1960).Google Scholar
48.Dodd, S.P., Cankurtaran, M., James, B.: Ultrasonic determination of the elastic and nonlinear acoustic properties of transition-metal carbide ceramics: TiC and TaC J. Mater. Sci. 38, 1107 (2003).Google Scholar
49.Angus, J.C., Jansen, F.: Dense “diamond-like” hydrocarbons as random covalent networks. J. Vac. Sci. Technol. A 6, 1778 (1988).CrossRefGoogle Scholar
50.Phillips, J.C.: Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 34, 153 (1979).Google Scholar
51.Thorpe, M.F.: Continuous deformations in random networks. J. Non-Cryst. Solids 57, 355 (1983).Google Scholar
52.Robertson, J.: Mechanical properties and coordinations of amorphous carbons. Phys. Rev. Lett. 68, 220 (1992).CrossRefGoogle ScholarPubMed
53.He, H., Thorpe, M.F.: Elastic properties of glasses. Phys. Rev. Lett. 54, 2107 (1985).CrossRefGoogle ScholarPubMed
54.von Keudell, A., Meier, M., Hopf, C.: Growth mechanism of amorphous hydrogenated carbon. Diamond Relat. Mater. 11, 969 (2002).Google Scholar
55.Thornton, J.A.: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol. A 4, 3059 (1986).CrossRefGoogle Scholar
56.Lynch, J.F., Ruderer, C.G., Duckworth, W.H. eds: Engineering Properties of Selected Ceramic Materials (American Ceramic Society, Columbus, OH, 1966).Google Scholar
57.Shi, B., Meng, W.J., Evans, R.D.: Characterization of high temperature deposited Ti-containing hydrogenated carbon thin films. J. Appl. Phys. 96, 7705 (2004).Google Scholar