Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T07:20:17.529Z Has data issue: false hasContentIssue false

Patterning of sapphire substrates via a solid state conversion process

Published online by Cambridge University Press:  01 February 2005

Hyoungjoon Park
Affiliation:
Center for Optical Technologies and Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Helen M. Chan
Affiliation:
Center for Optical Technologies and Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Richard P. Vinci
Affiliation:
Center for Optical Technologies and Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Get access

Abstract

Nanopatterned sapphire substrates offer the potential for improved performance of devices based on III-V nitrides, e.g., light-emitting diodes and laser diodes. Due to the chemical stability and hardness of sapphire, however, surface patterning is a time-consuming and expensive process. Therefore, a novel method was utilized, whereby a surface coating of Al was deposited on a sapphire substrate and patterned into an array of square mesas using e-beam lithography. The lateral dimensions of each mesa were approximately 400 × 400 nm, and the average height was approximately 100 nm. The metallic film was subsequently subjected to an oxidation treatment at 450 °C for 24 h (a heat treatment which had previously been shown to minimize hillock formation). For the second heat treatment, which is necessary to induce migration of the sapphire interface and hence achieve solid state conversion, a range of temperatures (800–1350 °C) was explored. Results showed that for a heat-treatment time of 1 h, pattern retention was achieved for annealing temperatures less than or equal to 1250 °C. Successful epitaxial conversion of the patterned mesas to sapphire was confirmed using electron backscatter diffraction.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Orton, J.W. and Foxon, C.T.: Group III nitride semiconductors for short wavelength light-emitting devices. Rep. Prog. Phys. 61, 1 (1998).CrossRefGoogle Scholar
2.Nakamura, S.: InGaN-based laser diodes. Ann. Rev. Mater. 28, 125 (1998).CrossRefGoogle Scholar
3.Kobayashi, H., Toyoda, Y., Ohki, Y., Matsuda, N. and Akasaki, I.: GaN blue light emitting diode (LED). National Tech. Rep. 28, 83 (1982).Google Scholar
4.Akasaki, I.: Renaissance and progress in nitride semiconductors. J. Cryst. Growth 198, 885 (1999).CrossRefGoogle Scholar
5.Pilkuhn, M.: New development in semiconductor light emitting diodes for short wavelength. VDE-Verlag, Itg-Fachbericht 150, 71 (1998).Google Scholar
6.Morkoc, H.: Defects in and applications of III-V nitride semiconductors. Mater. Sci. Forum 239, 119 (1997).CrossRefGoogle Scholar
7.Keller, S., Keller, B.P., Wu, Y-F., Heying, B., Kapolnek, D., Speck, J.S., Mishra, U.K. and Denbaars, S.P.: Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 68, 1525 (1996).CrossRefGoogle Scholar
8.Rosner, S.J., Carr, E.C., Ludowise, M.J., Girolami, G. and Erikson, H.I.: Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition. Appl. Phys. Lett. 70, 420 (1997).CrossRefGoogle Scholar
9.Hansen, M., Fini, P., Craven, M., Heying, B., Speck, J.S. and Denbaars, S.P.: Morphological and optical properties of InGaN laser diodes on laterally overgrown GaN. J. Cryst. Growth 234, 623 (2002).CrossRefGoogle Scholar
10.Sasaoka, C., Sunakawa, H., Kimura, A., Nido, M., Usui, A. and Sakai, A.: High-quality InGaN MQW on low-dislocation-density GaN substrate grown by hydride vapor- phase epitaxy. J. Cryst. Growth 189, 61 (1998).CrossRefGoogle Scholar
11.Nakamura, S.: The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281, 956 (1998).CrossRefGoogle ScholarPubMed
12.Fretas, J.A. Jr., Nam, O-H. and Davis, R.F.: Optical characterization of lateral epitaxial overgrown GaN layer. Appl. Phys. Lett. 72, 2990 (1998).CrossRefGoogle Scholar
13.Kidoguchi, I., Ishibashi, A., Sugahara, G. and Ban, Y.: Air-bridged lateral epitaxial overgrowth of GaN thin films. Appl. Phys. Lett. 76, 3768 (2000).CrossRefGoogle Scholar
14.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Masushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M. and Chocho, K.: InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially overgrown GaN substrate. Appl. Phys. Lett. 72, 211 (1998).CrossRefGoogle Scholar
15.Mukai, T., Takekawa, K. and Nakamura, S.: InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates. Jpn. J. Appl. Phys. 37, L839 (1998).CrossRefGoogle Scholar
16.Rokowski, A.M., Miraglia, P.Q., Preble, E.A., Einfeldt, S. and Davis, R.F.: Surface instability and associated roughness during conventional and pendeo-epitaxial growth of GaN (0001) films via MOVPE. J. Cryst. Growth 241, 141 (2002).CrossRefGoogle Scholar
17.Zheleva, T., Smith, S., Thomson, D. and Linthicum, K.: Pendeo-epitaxy: A new approach for lateral growth of gallium nitride films. J. Electron. Mater. 28 5 (1995).CrossRefGoogle Scholar
18.Zubia, D. and Hersee, S.D.: Nanoheteroepitaxy: The application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials. J. Appl. Phys. 85, 6492 (1999).CrossRefGoogle Scholar
19.Zubia, D., Zaidi, S.H., Hersee, S.D. and Brueck, S.R.J.: Nanoheteroepitaxy: Nanofabrication route to improved epitaxial growth. J. Vac. Sci. Technol. B 18, 3514 (2000).CrossRefGoogle Scholar
20.Kitayama, M., Powers, J.D., Kulinsky, L. and Glaeser, A.M.: Surface and interface properties of alumina via model studies of microdesigned interfaces. J. Eur. Ceram. Soc. 19, 2191 (1999).CrossRefGoogle Scholar
21.Hsu, Y.P., Chang, S.J., Su, Y.K., Sheu, J.K., Lee, C.T., Wen, T.C., Wu, L.W., Kuo, C.H., Chang, C.S. and Shei, S.C.: Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs. J. Cryst. Growth 261, 466 (2004).CrossRefGoogle Scholar
22.Chang, S.J., Lin, Y.C., Su, Y.K., Chang, C.S., Wen, T.C., Shei, S.C., Ke, J.C., Kuo, C.W., Chen, S.C. and Liu, C.H.: Nitride-based LEDs fabricated on patterned sapphire substrates. Solid-State Electron. 47, 1539 (2003).CrossRefGoogle Scholar
23.Park, H. and Chan, H.M.: A novel process for the generation of pristine sapphire surfaces. Thin Solid Films 422, 135 (2002).CrossRefGoogle Scholar
24.Beck, A.F., Heine, M.A., Caule, E.J. and Pryor, M.J.: The kinetics of the oxidation of Al in oxygen at high temperature. Corros. Sci. 7, 1 (1967).CrossRefGoogle Scholar
25.Maruyama, T. and Komatsu, W.: Surface diffusion of single-crystal Al2O3 by scratch-smoothing method. J. Am. Ceram. Soc 58, 338 (1975).CrossRefGoogle Scholar
26.Bennison, S.J. and Harmer, M.P.: Effect of magnesia solute on surface diffusion in sapphire and the role of magnesia in the sintering of alumina. J. Am. Ceram. Soc. 73, 833 (1990).CrossRefGoogle Scholar
27.Glaeser, A.M.: Investigating surface transport in ceramics using microdesigned interfaces, in Ceramic Interfaces: Properties and Applications (Inst. Mater. London, U.K., 1998), p. 241.Google Scholar
28.Bonzel, H.P.: Surface morphologies: Transient and equilibrium shapes. Interface Sci. 9, 21 (2001).CrossRefGoogle Scholar
29.Mullins, W.W.: Flattening of nearly plane solid surfaces due to capillarity. J. Appl. Phys. 80, 77 (1959).CrossRefGoogle Scholar
30.Bonzel, H.P. and Mullins, W.W.: Smoothing of perturbed vicinal surfaces. Surf. Sci. 350, 285 (1996).CrossRefGoogle Scholar
31.Ren, S.X., Kenik, E.A., Alexander, K.B. and Goyal, A.: Exploring spatial resolution in electron back-scattered diffraction experiments via Monte Carlo simulation. Microsc. Microanal. 4, 15 (1998).CrossRefGoogle ScholarPubMed
32.Kanaya, K. and Okayama, S.: Penetration and energy loss theory of electrons in solid targets. J. Phys. D Appl. Phys. 5, 43 (1972).CrossRefGoogle Scholar