Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T01:36:52.376Z Has data issue: false hasContentIssue false

Origin of the anomalous volume expansion in Al–Si alloys above liquidus

Published online by Cambridge University Press:  31 January 2011

W. M. Wang*
Affiliation:
Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China; and Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061, People's Republic of China
X. F. Bian
Affiliation:
Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061, People's Republic of China
H. R. Wang
Affiliation:
Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061, People's Republic of China
Zhen Wang
Affiliation:
Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061, People's Republic of China
L. Zhang
Affiliation:
Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
Z. G. Liu
Affiliation:
Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
J-M. Liu
Affiliation:
Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
*
a)Address all correspondence to this author. e-mail: wmwang@nju.edu.cn
Get access

Abstract

The sessile-drop method and high-temperature small-angle x-ray diffraction technique were used to characterize the density of liquid Al–Si alloys with Si content C = 0 to 22 wt%. A distinct abnormal volume expansion of the hyper-eutectic melts was identified just above the liquidus (within TLTk) during the heating sequence (h.s.), which is irreversible during the cooling sequence (c.s.). This phenomenon is explained by the segregation of Si atoms from the supersaturated “quasi-eutectic” structure and formation of silicon clusters in the superheated melt. In addition, a pre-peak in the x-ray diffraction spectrum of Al–14% Si melt was observed at 850 °C, which is associated with the silicon clusters. The pre-peak remains when the superheated melt is cooled down to the liquidus (670 °C); this result is in accord with the density measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Seerveld, J., Van Till, S., Nguyen, A., Timmer, C., and Van Zytveld, J.B., J. Phys. F: Met. Phys. 15, L141 (1985).CrossRefGoogle Scholar
2.Smith, P.M., Elmer, J.W., and Gallegos, G.F., Scripta Mater. 40, 937 (1999).CrossRefGoogle Scholar
3.Sasaki., H., Tokizaki, E., Terashima, K., and Kimura, S., Jpn. J. Appl. Phys. 33, 3803 (1994).CrossRefGoogle Scholar
4.Nakanishi, H., Nakazato, K., Abe, K., Maeda, S., and Terashima, K., J. Cryst. Growth 203, 75 (1999).CrossRefGoogle Scholar
5.Doge, G.G., Naturforsch, Z. 21, 266 (1966).Google Scholar
6.Bashforth, F. and Adams, J.G., An Attempt to Test the Theories Of Capillary Actions (University Press, Cambridge, United Kingdom, 1883).Google Scholar
7.Mukai, K. and Yuan, Z., Mater. Trans. JIM 41, 323 (2000).CrossRefGoogle Scholar
8.Kryshenko, G.G., Shpakov, V.I., Nikitin, V.I., and Torshilova, S.I., Izb. AN SSSR. Metalle. 4, 204 (1977).Google Scholar
9.Popel, P.S., Demina, E.L., Arhangelskii, E.L., and Baum, B.A., Teplofiz. Besokih. Temp. T25, 487 (1987).Google Scholar
10.Maze, C. and Burnet, G., Surf. Sci. 13, 450 (1969).CrossRefGoogle Scholar
11.Iida, T. and Guthrie, R., The Physical Properties of Liquid Metals (Clarendon, Oxford, United Kingdom, 1993), p. 233.Google Scholar
12.Okajima, K., Matsubuchi, S., and Sakao, H., Tran. Japan Inst. Met. 26, 183 (1985).CrossRefGoogle Scholar
13.Waseda, Y., Shinoda, K., Sugiyama, K., Takeda, S., Terashima, K., and Toguri, J.M., Jpn. J. Appl. Phys. 34, 4124 (1995).CrossRefGoogle Scholar
14.Cahn, W.Nature 323, 668 (1986).CrossRefGoogle Scholar
15.Jin, Z.H, Sheng, H.W., and Lu, K., Phys. Rev. B 60, 141 (1999).CrossRefGoogle Scholar
16.Gabathuler, J., Steeb, S., and Lamparter, P., Z. Naturforsch 34a, 1305 (1979).CrossRefGoogle Scholar
17.Krishnan, S. and Price, D.L., J. Phys: Condens. Matter 12, R145 (2000).Google Scholar
18.Bletry, J., Naturforsh, Z. 33a, 327 (1978).Google Scholar
19.Saboungi, M., Marr, J., and Blander, M., J. Chem. Phys. 68, 1375 (1978).CrossRefGoogle Scholar
20.Okajima, K., Matsubuchi, S., and Sakao, H., Trans. JIM. 26, 183 (1985).CrossRefGoogle Scholar
21.Okajima, K. and Sakao, H., Trans. JIM. 22, 347 (1981).CrossRefGoogle Scholar
22.Waseda, Y., The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).Google Scholar
23.Barnes, A.C., Hamilton, M.A., Beck, U., and Fischer, H.E., J. Phys.: Condens. Matter 12, 7311 (2000).Google Scholar
24.Hsieh, H.Y., Toby, B.H., Egami, T., He, Y., and Poon, S.J., J. Mater. Res. 5, 2807 (1990).CrossRefGoogle Scholar
25.Cervinka, L., J. Non-Cryst. Solids 232–234, 1 (1998).CrossRefGoogle Scholar
26.Ansell, S., Krishna, S., Felten, J.J., and Price, D.L., J Phys. Condens. Matter 10, L73 (1998).CrossRefGoogle Scholar
27.Price, D.L., Moss, S.C., Reijers, R., Saboungi, M., and Susman, S., J. Phys. C: Solid State Phys. 21, L1069 (1988).CrossRefGoogle Scholar
28.Wang, W.M., Bian, X.F., Qin, J. Y., and Syliusarenko, S.I., Metall. Mater. Trans. A 31, 2163 (2000).CrossRefGoogle Scholar