Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-17T08:00:50.288Z Has data issue: false hasContentIssue false

Current Status of Ferroelectric Random-Access Memory

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The current status of ferroelectric random-access memory (FeRAM) technology is reviewed in this article. Presented first is the status of conventional FeRAM, in which the memory cells are composed of ferroelectric capacitors to store the data and cell-selection transistors to access the selected capacitors. Discussed next are recent developments in the field. Pb(Zrx, Ti1–x)O3 (PZT) and SrBi2Ta2O9 (SBT) films are being used to produce 0.13 mμ and 0.18 μm FeRAM cells, respectively, with a stacked capacitor configuration; these cells are easily embedded into logic circuits. A new class of FeRAM called 6T4C—containing static RAM (SRAM) cells composed of six transistors (6T) and four ferroelectric capacitors (4C)—has been commercially produced. This type of FeRAM features a nondestructive readout operation, unlimited read/write cycling, and a fast access time of less than 10 ns. Lastly, the status of field-effect-transistor (FET)-type FeRAM is reviewed, emphasizing that the data retention time of a ferroelectric-gate FET has been improved to more than a month in recent studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Masui, S.Yokozeki, W.Oura, M.Ninomiya, T.Mukaida, K.Takayama, Y. and Teramoto, T.Proc. IEEE Custom Integrated Circuits Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2003) p. 403.Google Scholar
2Takahashi, K.Park, B.-E.Aizawa, K. and Ishiwara, H.Abs. Int. Conf. Solid State Devices and Materials, Tokyo, Paper No. D-1-2 (2004).Google Scholar
3McAdams, H.Acklin, R.Blake, T.Fong, J.Liu, D.Madan, S.Moise, T.Natarajan, S.Qian, N.Qui, Y.Roscher, J.Seshadri, A.Summerfelt, S.Du, X.Eliason, J.Kraus, W.Lanham, R.Li, F.Pietrzyk, C. and Rickes, J.Symp. VLSI Circuits Dig. Tech. Papers (Kyoto, Japan, June 2003) p. 175.Google Scholar
4Song, Y.J.Joo, H.J.Jang, N.W.Kim, H.H.Park, J.H.Kang, H.Y.Lee, S.Y. and Kim, K.Symp. VLSI Technologies Dig. Tech. Papers (Kyoto, Japan, June 2003) p. 169.Google Scholar
5Shiratake, S.Miyakawa, T.Takeuchi, Y.Ogiwara, R.Kamoshida, M.Hoya, K.Oikawa, K.Ozaki, T.Kunishima, I.Yamakawa, K.Sugimoto, S.Takashima, D.Joachim, H.O.Rehm, N.Wohlfahrt, J.Nagel, N.Beitel, G.Jacob, M. and Roehr, T.Proc. IEEE Int. Solid-State Circuits Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2003) p. 282.Google Scholar
6Kanaya, H.Tomioka, K.Matsushita, T.Omura, M.Ozaki, T.Kumura, Y.Shimojo, Y.Morimoto, T.Hidaka, O.Shuto, S.Koyama, H.Yamada, Y.Osari, K.Tokoh, N.Fujisaki, F.Iwabuchi, N.Yamaguchi, N.Watanabe, T.Yabuki, M.Shinomiya, H.Watanabe, N.Itoh, E.Tsuchiya, T.Yamakawa, K.Natori, K.Yamazaki, S.Nakazawa, K.Takashima, D.Shiratake, S.Ohtsuki, S.Oowaki, Y.Kunishima, I. and Nitayama, A.Symp. VLSI Technologies Dig. Tech. Papers (Honolulu, HI, June 2004) p. 150.Google Scholar
7International Technology Roadmap for Semiconductors, 2003 Edition (ITRS) (Semiconductor Industry Association, San Jose, 2003).Google Scholar
8Nagano, Y.Mikawa, T.Kutsunai, T.Hayashi, S.Nasu, T.Natsume, S.Tatsunari, T.Ito, T.Goto, S.Yano, H.Noma, A.Nagahashi, K.Miki, T.Sakagami, M.Izutsu, Y.Nakakuma, T.Hirano, H.Iwanari, S.Murakuki, Y.Yamaoka, K.Goho, Y.Judai, Y.Fujii, E. and Sato, K.Symp. VLSI Technologies Dig. Tech. Papers (Kyoto, Japan, June 2003) p. 171.Google Scholar
9Yamaoka, K.Iwanari, S.Murakuki, Y.Hirano, H.Sakagami, M.Nakakuma, T.Miki, T. and Gohou, Y.Proc. IEEE Int. Solid-State Circuits Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2004) p. 50.Google Scholar
10Masui, S.Ninomiya, T.Oura, M.Yokozeki, W.Mukaida, K. and Kawashima, S.IEEE J. Solid-State Circuits 38 (2003) p. 715.CrossRefGoogle Scholar
11Ross, I.M. U.S. Patent No. 2,791,760 (1957).Google Scholar
12Ishiwara, H. and Park, B.-E., in Ferroelectric Thin Films XI, edited by Kaufman, D.Y.Hoffman-Elfert, S., Gilbert, S.R.Aggarwal, S. and Shimizu, M. (Mat. Res. Soc. Symp. Proc. 748, Warrendale, PA, 2003) p. 297.Google Scholar
13Fujimori, Y.Nakamura, T. and Kamisawa, A.Jpn. J. Appl. Phys. 38 (1999) p. 2285.CrossRefGoogle Scholar
14Li, T.Hsu, S.T.Ulrich, B.D.Stecker, L.Evans, D.R. and Lee, J.J.IEEE Electron. Dev. Lett. 23 (2002) p. 339.Google Scholar
15Sakai, S. and Ilangovan, R.IEEE Electron. Dev. Lett. 25 (2004) p. 369.CrossRefGoogle Scholar
16Tokumitsu, E.Fujii, G. and Ishiwara, H.Appl. Phys. Lett. 75 (1999) p. 575.CrossRefGoogle Scholar
17Kim, K-H.Han, J-P., Jung, S-W., and Ma, T-P., IEEE Electron. Dev. Lett. 23 (2002) p. 82.CrossRefGoogle Scholar
18Yu, B.-G., You, I.-K., Lee, W.-J., Ryu, S.-O., Kim, K.-D., Yoon, S.-M., Cho, S.-M., Lee, N.-Y., and Shin, W.-C., J. Semicond. Tech. Sci. 2 (2002) p. 213.Google Scholar