Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T05:52:33.557Z Has data issue: false hasContentIssue false

Materials Challenges Facing Electrical Energy Storage

Published online by Cambridge University Press:  31 January 2011

M. Stanley Whittingham
Affiliation:
Binghamton University, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the past two decades, the demand for the storage of electrical energy has mushroomed both for portable applications and for static applications. As storage and power demands have increased predominantly in the form of batteries, the system has evolved. However, the present electrochemical systems are too costly to penetrate major new markets, still higher performance is required, and environmentally acceptable materials are preferred. These limitations can be overcome only by major advances in new materials whose constituent elements must be available in large quantities in nature; nanomaterials appear to have a key role to play. New cathode materials with higher storage capacity are needed, as well as safer and lower cost anodes and stable electrolyte systems. Flywheels and pumped hydropower also have niche roles to play.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

References

1.LaCommare, K.H., Eto, J.H., Understanding the Cost of Power Interruptions to U.S. Electricity Consumers (Energy Analysis Department, Lawrence Berkeley National Laboratory, University of California-Berkeley, Berkeley, CA, 2004; http://certs.lbl.gov/pdf/55718.pdf) (accessed January 2008).Google Scholar
2.Dinorwig Power Station, http://www.fhc.co.uk/dinorwig.htm (accessed January 2008).Google Scholar
3.Whittingham, M.S., Savinell, R.F., Zawodzinski, T., Eds., “Batteries and Fuel Cells”, in Chem. Rev. 104, 4243 (2004).Google Scholar
4.Whittingham, M.S., Prog. Solid State Chem. 12, 41 (1978).Google Scholar
5.Linden, D., Reddy, T.B., Handbook of Batteries (McGraw Hill, New York, ed. 3, 2001).Google Scholar
6.Tarascon, J. M., Armand, M., Nature 414, 359 (2001).Google Scholar
7.Basic Research Needs for Electrical Energy Storage (Offce of Basic Energy Sciences, U.S. Department of Energy, Washington, DC, 2007).Google Scholar
8.Kötz, R., Carlen, M., Electrochim. Acta 45, 2483 (2000).Google Scholar
9.Libowitz, G.G., Whittingham, M.S., Materials Science in Energy Technology (Academic Press, New York, 1979).Google Scholar
10.Flandois, S., Simon, B., Carbon 37, 165 (1999).Google Scholar
11.Fan, Q., Chupas, P.J., Whittingham, M.S., Electrochem. Solid-State Lett. 10 (12), A274 (2007).Google Scholar
12.Whittingham, M.S., Sciences, 1126 (1976).Google Scholar
13.Whittingham, M.S., Mater. Res. Bull. 13, 959 (1978).Google Scholar
14.Song, Y., Zavalij, P.Y., Whittingham, M.S., J. Electrochem. Soc. 152, A721 (2005).Google Scholar
15.Johnson, C.S., Kim, J.S., Kropf, A.J., Kahaian, A.J., Vaughey, J.T., Fransson, L.M.L., Edström, K., Thackeray, M.M., Chem. Mater. 15, 2313 (2003).Google Scholar
16.Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
17. A123; www.a123systems.com (accessed January 2008).Google Scholar
18.Drezen, T., Kwon, N.-H., Bowenb, P., Teerlinck, I., Isono, M., Exnar, I., J. Power Sources 174, 949 (2007).Google Scholar
19.Song, Y., Zavalij, P.Y., Chernova, N.A., Whittingham, M.S., Chem. Mater. 17, 1139 (2005).Google Scholar
20.Ogasawara, T., Débart, A., Holzapfel, M., Novák, P., Bruce, P.G., J. Am. Chem. Soc. 128, 1390 (2006).Google Scholar
21.Wang, Y., Takahashi, K., Lee, K.H., Cao, G.Z., Adv. Funct. Mater. 16, 1133 (2006).Google Scholar
22.Kim, D.-H., Kim, J., Electrochem. Solid-State Lett. 9, A439 (2006).Google Scholar
23.Windle, A., private communication.Google Scholar
24.Chen, J., Whittingham, M.S., Electrochem. Commun. 8, 855 (2006).Google Scholar
25.Zhou, F., Cococcionic, M., Marianetti, C., Morgan, D., Chen, M., Ceder, G., Phys. Rev. B 70, 235121 (2004).Google Scholar
26.Wang, C.-W., Cook, K.A., Sastry, A.M., J. Electrochem. Soc. 150, A385 (2003).Google Scholar
27.Maxisch, T., Zhou, F., Ceder, G., Phys. Rev. B 73 (2006).Google Scholar
28.Chen, G., Song, X., Richardson, T.J., Electrochem. Solid-State Lett. 9, A295 (2006).Google Scholar
29.Breger, J., Dupre, N., Chupas, P.J., Lee, P.T., Proffen, T., Parise, J., Grey, C.P., J. Am. Chem. Soc. 127, 7529 (2005).Google Scholar
30.Grey, C.P., Dupre, N., Chem. Rev. 104, 4493 (2004).Google Scholar
31.Chernova, N.A., Ma, M.M., Xiao, J., Whittingham, M.S., Breger, J., Grey, C.P., Chem. Mater. 19, 4682 (2007).Google Scholar
32.Petkov, V., Zavalij, P.Y., Lutta, S., Whittingham, M.S., Parvanov, V., Shastri, S., Phys. Rev. B69, 085410 (2004).Google Scholar