Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T19:53:51.784Z Has data issue: false hasContentIssue false

Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates

Published online by Cambridge University Press:  31 January 2011

Joost Vlassak*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a) Address all correspondence to this author. e-mail: vlassak@esag.harvard.edu
Get access

Abstract

In a previous paper, we have demonstrated that a microcrystalline copper film well bonded to a polymer substrate can be stretched beyond 50% without cracking. The film eventually fails through the coevolution of necking and debonding from the substrate. Here we report much lower strains to failure (approximately 10%) for polymer-supported nanocrystalline metal films, the microstructure of which is revealed to be unstable under mechanical loading. We find that strain localization and deformation-associated grain growth facilitate each other, resulting in an unstable deformation process. Film/substrate delamination can be found wherever strain localization occurs. Therefore, we propose that three concomitant mechanisms are responsible for the failure of a plastically deformable but microstructurally unstable thin metal film: strain localization at large grains, deformation-induced grain growth, and film debonding from the substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004)CrossRefGoogle ScholarPubMed
2.Wagner, S., Lacour, S.P., Jones, J., Hsu, P.I., Sturm, J.C., Li, T., Suo, Z.: Electronic skin: Architecture and components. Physica E 25, 326 (2005)CrossRefGoogle Scholar
3.Bonderover, E., Wagner, S.: A woven inverter circuit for e-textile applications. IEEE Electron Device Lett. 25, 295 (2004)CrossRefGoogle Scholar
4.Brabec, C.J.: Organic photovoltaics: Technology and market. Sol. Energy Mater. Sol. Cells 83, 273 (2004)CrossRefGoogle Scholar
5.Keller, R.R., Phelps, J.M., Read, D.T.: Tensile and fracture behavior of free-standing copper films. Mater. Sci. Eng., A 214, 42 (1996)CrossRefGoogle Scholar
6.Huang, H., Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000)CrossRefGoogle Scholar
7.Xiang, Y., Chen, X., Vlassak, J.J.: The mechanical properties of electroplated Cu thin films measured by means of the bulge test techniqueThin Films: Stresses and Mechanical Properties IX edited by C.S. Ozkan, L.B. Freund, R.C. Cammarata, and H. Gao (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA 2002) L4.9Google Scholar
8.Espinosa, H.D., Prorok, B.C., Fischer, M.: A methodology for determining mechanical properties of freestanding thin films and mems materials. J. Mech. Phys. Solids 51, 47 (2003)CrossRefGoogle Scholar
9.Lee, H.J., Zhang, P., Bravman, J.C.: Tensile failure by grain thinning in micromachined aluminum thin films. J. Appl. Phys. 93, 1443 (2003)CrossRefGoogle Scholar
10.Li, T., Huang, Z.Y., Xi, Z.C., Lacour, S.P., Wagner, S., Suo, Z.: Delocalizing strain in a thin metal film on a polymer substrate. Mech. Mater. 37, 261 (2005)CrossRefGoogle Scholar
11.Li, T., Suo, Z.: Ductility of thin metal films on polymer substrates modulated by interfacial adhesion. Int. J. Solids Struct. 44, 1696 (2006)CrossRefGoogle Scholar
12.Chui, S.L., Leu, J., Ho, P.S.: Fracture of metal-polymer line structures. 1. Semiflexible polyimide. J. Appl. Phys. 76, 5136 (1994)CrossRefGoogle Scholar
13.Kraft, O., Hommel, M., Arzt, E.: X-ray diffraction as a tool to study the mechanical behaviour of thin films. Mater. Sci. Eng., A 288, 209 (2000)CrossRefGoogle Scholar
14.Hommel, M., Kraft, O.: Deformation behavior of thin copper films on deformable substrates. Acta Mater. 49, 3935 (2001)CrossRefGoogle Scholar
15.Alaca, B.E., Saif, M.T.A., Sehitoglu, H.: On the interface debond at the edge of a thin film on a thick substrate. Acta Mater. 50, 1197 (2002)CrossRefGoogle Scholar
16.Lacour, S.P., Wagner, S., Huang, Z., Suo, Z.: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404 (2003)CrossRefGoogle Scholar
17.Yu, D.Y.W., Spaepen, F.: The yield strength of thin copper films on kapton. J. Appl. Phys. 95, 2991 (2003)CrossRefGoogle Scholar
18.Xiang, Y., Li, T., Suo, Z., Vlassak, J.J.: High ductility of thin metal film adherent on polymer substrate. Appl. Phys. Lett. 87, 161910 (2005)CrossRefGoogle Scholar
19.Niu, R.M., Liu, G., Wang, C., Zhang, G., Ding, X.D., Sun, J.: Thickness dependent critical strain in submicron cu films adherent to polymer substrate. Appl. Phys. Lett. 90, 161907 (2007)CrossRefGoogle Scholar
20.Kang, Y.S.: Microstructure and strengthening mechanisms in aluminum thin films on polyimide film. Ph.D. Thesis, The University of Texas at Austin 1996Google Scholar
21.Macionczyk, F., Bruckner, W.: Tensile testing of AlCu thin films on polyimide foils. J. Appl. Phys. 86, 4922 (1999)CrossRefGoogle Scholar
22.Gruber, P., Böhm, J., Wanner, A., Sauter, L., Spolenak, R., Arzt, E.: Size effect on crack formation in Cu/Ta and Ta/Cu/Ta thin film systemsNanoscale Materials and Modeling-Relations Among Processing, Microstructure and Mechanical Properties edited by P.M. Anderson, T. Foecke, A. Misra, and R.E. Rudd (Mater. Res. Soc. Symp. Proc. 821, Warrendale, PA 2004)P2.7Google Scholar
23.Lu, N., Wang, X., Suo, Z., Vlassak, J.J.: Metal films on polymer substrates strained beyond 50%. Appl. Phys. Lett. 91, 221909 (2007)CrossRefGoogle Scholar
24.Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006)CrossRefGoogle Scholar
25.Zhang, K., Weertman, J.R., Eastman, J.A.: Rapid stress-driven grain coarsening in nanocrystalline cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87, 061921 (2005)CrossRefGoogle Scholar
26.Jin, M., Minor, A.M., Stach, E.A., Morris, J.W.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004)CrossRefGoogle Scholar
27.Gianola, D.S., Van Petegem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H., Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006)CrossRefGoogle Scholar
28.Thompson, C.V.: Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159 (2000)CrossRefGoogle Scholar
29.McLean, M., Gale, B.: Surface energy anisotropy by an improved thermal grooving technique. Philos. Mag. 20, 1033 (1969)CrossRefGoogle Scholar
30.Zielinski, E.M., Vinci, R.P., Bravman, J.C.: The influence of strain energy on abnormal grain growth in copper thin films. Appl. Phys. Lett. 67, 1078 (1995)CrossRefGoogle Scholar
31.Gottstein, G., Shvindlerman, L.S.: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications(CRC Press Boca Raton, FL 1999)Google Scholar
32.Cahn, J.W., Taylor, J.E.: A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater. 52, 4887 (2004)CrossRefGoogle Scholar
33.Suzuki, A., Mishin, Y.: Atomic mechanisms of grain boundary motion. Mater. Sci. Forum 502, 157 (2005)CrossRefGoogle Scholar
34.Winning, M., Gottstein, G., Shvindlerman, L.S.: Migration of grain boundaries under the influence of an external shear stress. Mater. Sci. Eng., A 317, 17 (2001)CrossRefGoogle Scholar
35.Winning, M., Gottstein, G., Shvindlerman, L.S.: On the mechanisms of grain boundary migration. Acta Mater. 50, 353 (2002)CrossRefGoogle Scholar
36.Molodov, D.A., Ivanov, V.A., Gottstein, G.: Low angle tilt boundary migration coupled to shear deformation. Acta Mater. 55, 1843 (2007)CrossRefGoogle Scholar