Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-17T18:28:40.171Z Has data issue: false hasContentIssue false

Radiation detector materials: An overview

Published online by Cambridge University Press:  31 January 2011

B.D. Milbrath*
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
A.J. Peurrung
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
M. Bliss
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
W.J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
*
a)Address all correspondence to this author. e-mail: Brian.Milbrath@pnl.gov
Get access

Abstract

Due to events of the past two decades, there has been new and increased usage of radiation-detection technologies for applications in homeland security, nonproliferation, and national defense. As a result, there has been renewed realization of the materials limitations of these technologies and greater demand for the development of next-generation radiation-detection materials. This review describes the current state of radiation-detection material science, with particular emphasis on national security needs and the goal of identifying the challenges and opportunities that this area represents for the materials-science community. Radiation-detector materials physics is reviewed, which sets the stage for performance metrics that determine the relative merit of existing and new materials. Semiconductors and scintillators represent the two primary classes of radiation detector materials that are of interest. The state-of-the-art and limitations for each of these materials classes are presented, along with possible avenues of research. Novel materials that could overcome the need for single crystals will also be discussed. Finally, new methods of material discovery and development are put forward, the goal being to provide more predictive guidance and faster screening of candidate materials and thus, ultimately, the faster development of superior radiation-detection materials.

Type
Review
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1McDonald, J.C., Coursey, B.M., Carter, M.: Detecting illicit radioactive sources. Phys. Today 57(11), 36 2004Google Scholar
2Gozani, T.: The role of neutron based inspection techniques in the post 9/11/01 era. Nucl. Instrum. Methods Phys. Res. B 213, 460 2004Google Scholar
3Lubenau, J.O., Strom, D.J.: Safety and security of radiation sources in the aftermath of 11 September 2001. Health Phys. 83(2), 155 2002CrossRefGoogle ScholarPubMed
4Perez-Andujar, A., Pibida, L.: Performance of CdTe, HPGe and NaI(Tl) detectors for radioactivity measurements. Appl. Radiat. Isot. 60, 41 2004CrossRefGoogle ScholarPubMed
5Price, W.J.: Nuclear Radiation Detection 2nd ed.McGraw-Hill New York 1964Google Scholar
6Knoll, G.F.: Radiation Detection and Measurement, 3rd ed.John Wiley & Sons New York 1999Google Scholar
7Leo, W.R.: Techniques for Nuclear and Particle Physics Experiments 2nd ed.Springer-Verlag Berlin 1994Google Scholar
8Rodnyi, P.A.: Physical Processes in Inorganic Scintillators CRD Press Boca Raton, FL 1997Google Scholar
9Cobut, V., Cirioni, L., Patau, J.P.: Accurate transport simulation of electron tracks in the energy range 1 keV–4 MeV. Nucl. Instrum. Methods Phys. Res. B 215, 57 2004CrossRefGoogle Scholar
10Martinez, J.D., Mayol, R., Salvat, F.: Monte Carlo simulation of kilovolt electron transport in solids. J. Appl. Phys. 67(6), 2955 1990CrossRefGoogle Scholar
11Fraser, G.W., Abbey, A.F., Holland, A., McCarthy, K., Owens, A., Wells, A.: The x-ray energy response of silicon. Part A. Theory. Nucl. Instrum. Methods Phys. Res. A 350(1–2), 368 1994Google Scholar
12Gao, F., Campbell, L.W., Devanathan, R., Xie, Y., Corrales, L.R., Peurrung, A.J., Weber, W.J.: Monte Carlo method for simulating γ-ray interaction with materials: A case study on Si. Nucl. Instrum. Methods Phys. Res., Sect. A 579(1), 292 2007Google Scholar
13Gao, F., Campbell, L.W., Devanathan, R., Xie, Y.L., Zhang, Y., Peurrung, A.J., Weber, W.J.: Gamma-ray interaction in Ge: Monte Carlo simulation. Nucl. Instrum. Methods Phys. Res., Sect. B 255, 286 2007CrossRefGoogle Scholar
14Blackburn, B.W., Jones, J.L., Moss, C.E., Mihalczo, J.T., Hunt, A.W., Harmon, J.F., Watson, S.M., Johnson, J.T.: Utilization of actively-induced, prompt radiation emission for nonproliferation applications. Nucl. Instrum. Methods Phys. Res., Sect. B 261, 341 2007CrossRefGoogle Scholar
15Moss, C.E., Hollas, C.L., McKinney, G.W., Myers, W.L.: Comparison of active interrogation techniques. IEEE Trans. Nucl. Sci. 53(4), 2242 2006CrossRefGoogle Scholar
16Fiorini, C., Perotti, F.: Small prototype of Anger camera with submillimeter position resolution. Rev. Sci. Instrum. 76, 044303 2005CrossRefGoogle Scholar
17Gmar, M., Gal, O., Goaller, C.L., Inanov, O.P., Potapov, V.N., Stepanov, V.E., Laine, F., Lamadie, F.: Development of coded-aperture imaging with a compact gamma camera. IEEE Trans. Nucl. Sci. 51(4), 1682 2004CrossRefGoogle Scholar
18Kazachkov, Y.P., Semenov, D.S., Goryacheva, N.P.: Application of coded apertures in medical γ-ray cameras. Instrum. Exp. Tech. (USSR) 50, 267 2007Google Scholar
19Lehner, C.E., Hong, Z., Zhang, F.: 4p Compton imaging using a 3-D position-sensitive CdZnTe detector via weighted list-mode maximum likelihood. IEEE Trans. Nucl. Sci. 51(4), 1618 2004Google Scholar
20Vetter, K., Burks, M., Cork, C., Cunningham, M., Chivers, D., Hull, E., Krings, T., Manini, H., Mihailescu, L., Nelson, K., Protic, D., Valentine, J., Wright, D.: High-sensitivity Compton imaging with position-sensitive Si and Ge detectors. Nucl. Instrum. Methods Phys. Res. A 579, 363 2007CrossRefGoogle Scholar
21Siciliano, E.R., Ely, J.H., Kouzes, R.T., Milbrath, B.D., Schweppe, J.E., Stromswold, D.C.: Comparison of PVT and NaI(Tl) scintillators for vehicle portal monitor applications. Nucl. Instrum. Methods Phys. Res. A 550, 647 2005CrossRefGoogle Scholar
22Venkataraman, R., Croft, S.: Determination of plutonium mass using gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. A 505(1-2), 527 2003CrossRefGoogle Scholar
23Swoboda, M., Arlt, R., Gostilo, V., Lupilov, A., Majorov, M., Moszynski, M., Syntfeld, A.: Spectral gamma detectors for hand-held radioisotope identification devices (RIDs) for nuclear security applications. IEEE Trans. Nucl. Sci. 52(6), 3111 2005Google Scholar
24Devanathan, R., Corrales, L.R., Gao, F., Weber, W.J.: Signal variance in gamma-ray detections—A review. Nucl. Instrum. Methods Phys. Res. A 565(2), 637 2006Google Scholar
25Fano, U.: On the theory of ionization yield of radiations in different substances. Phys. Rev. 70, 44 1946CrossRefGoogle Scholar
26Fano, U.: Ionization yield of radiations. 2. The fluctuations of the number of ions. Phys. Rev. 72, 26 1947Google Scholar
27Chow, D.T., Lindeman, M.A., Cunningham, M.F., Frank, M., Barbee, T.W., Labov, S.E.: Gamma-ray spectrometers using a bulk Sn absorber coupled to a Mo/Cu multilayer superconducting transition edge sensor. Nucl. Instrum. Methods Phys. Res. A 444(1–2), 196 2000Google Scholar
28Van Roosbroeck, W.: Theory of the yield and Fano factor of electron–hole pairs generated in semiconductors by high-energy particles. Phys. Rev. A 139, 1702 1965Google Scholar
29Alig, R.C.: Scattering by ionization and phonon emission in semiconductors. II. Monte Carlo calculations. Phys. Rev. B 27, 968 1983Google Scholar
30Scholze, F., Henneken, H., Kuschnerus, P., Rabus, H., Richter, M., Ulm, G.: Determination of the electron–hole pair creation energy for semiconductors from the spectral responsivity of photodiodes. Nucl. Instrum. Methods Phys. Res. A 439, 208 2000Google Scholar
31Amman, M., Luke, P.N.: Optimization criteria for coplanar-grid detectors. IEEE Trans. Nucl. Sci. 46(3), 205 1999Google Scholar
32Luke, P.N., Amman, M., Lee, J.S., Yaver, H.: Coplanar-grid CdZnTe detector with three-dimensional position sensitivity. Nucl. Instrum. Methods Phys. Res. A 439(2-3), 611 2000Google Scholar
33Zhang, F., He, Z., Xu, D.: Analysis of detector response using 3-D position-sensitive CZT gamma-ray spectrometers. IEEE Trans. Nucl. Sci. 51(6), 3098 2004CrossRefGoogle Scholar
34Pomorski, M., Berdermann, E., Caragheorgheopol, A., Ciobanu, M., Ki, M., Martemmiyanov, A., Nebel, C., Mortiz, P.: Development of single-crystal CVD-diamond detectors for spectroscopy and timing. Phys. Status Solidi A 203(12), 3152 2006Google Scholar
35Coche, A., Siffert, P.: Lithium drifted silicon and germanium detectors in Semiconductor Detectors,, edited by G. Bertolini and A. Coche (Elsevier-North Holland, Amsterdam, 1968)Google Scholar
36Sakai, E.: Present status of room temperature semiconductor detectors. Nucl. Instrum. Methods Phys. Res. 196, 121 1982Google Scholar
37Friedrich, S.: Nuclear diagnostics with cryogenic spectrometers. Nucl. Instrum. Methods Phys. Res. A 579, 157 2007Google Scholar
38Horansky, R.D., Ullom, J.N., Beall, J.A., Doriese, W.B., Duncan, W.D., Ferreira, L., Hilton, G.C., Irwin, K.D., Reintsema, C.D., Vale, L.R., Zink, B.L., Hoover, A., Rudy, C.R., Tournear, D.M., Vo, D.T., Rabin, M.W.: Superconducting absorbers for use in ultra-high resolution gamma-ray spectrometers based on low temperature microcalorimeter arrays. Nucl. Instrum. Methods Phys. Res. A 579, 169 2007CrossRefGoogle Scholar
39Hull, E.L., Pehl, R.H., Lathrop, J.R., Mann, P.L., Mashburn, R.B., Suttle, B.E., Miley, H.S., Aalseth, C.E., Bowyer, T.W., Hossbach, T.W.: Mechanically cooled large-volume germanium detector systems for nuclear explosion monitoring in Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies,, Denver, CO (Los Alamos National Laboratory Report LA-UR-07-5613, Los Alamos, NM, 2007Google Scholar
40Upp, D.L., Keyser, R.M., Twomey, T.R.: New cooling methods for HPGE detectors and associated electronics. J. Radioanal. Nucl. Chem. 264(1), 121 2005CrossRefGoogle Scholar
41Luke, P.N., Amman, M., Tindall, C., Lee, J.S.: Recent developments in semiconductor gamma-ray detectors. J. Radioanal. Nucl. Ch. 264(1), 145 2005Google Scholar
42Owens, A., Peacock, A.: Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. A 531(2), 18 2004CrossRefGoogle Scholar
43Zhang, F., He, Z.: New readout electronics for 3-D position sensitive CdZnTe/HgI2 detector arrays. IEEE Trans. Nucl. Sci. 53(5), 3021 2006CrossRefGoogle Scholar
44Butler, J.F., Lingren, C.L., Doty, F.P.: Cd1−xZnxTe gamma-ray detectors. IEEE Trans. Nucl. Sci. 39(4), 605 1992CrossRefGoogle Scholar
45Carini, G.A., Camarda, G.S., Zhong, Z., Siddons, D.P., Bolotnikov, A.E., Wright, G.W., Barber, B., Arnone, C., James, R.B.: High-energy x-ray diffraction and topography investigation of CdZnTe. J. Electron. Mater. 34(6), 804 2006Google Scholar
46Sang, W.G., Wang, K.S., Min, J.H., Teng, J.Y., Zhang, Q., Qian, Y.B.: A novel two-step chemical passivation process for CdZnTe detectors. Semicond. Sci. Technol. 20(5), 343 2005Google Scholar
47Zhang, F., He, Z., Knoll, G.F., Wehe, D.K., Berry, J.E.: 3-D position sensitive CdZnTe spectrometer performance using third generation VAS/TAT readout electronics. IEEE Trans. Nucl. Sci. 52(5), 2009 2005CrossRefGoogle Scholar
48Chu, M.R., Terterian, S., Ting, D.: Role of zinc in CdZnTe radiation detectors. IEEE Trans. Nucl. Sci. 51(5), 2405 2004Google Scholar
49Greenberg, J.H.: P–T–X phase equilibrium and vapor pressure scanning of non-stoichiometry in the Cd–Zn–Te system. Prog. Cryst. Growth Charact. Mater. 47(2-3), 196 2003Google Scholar
50Terterian, S., Chu, M., Ting, D.: Distribution of the high resistivity region in CdZnTe and its effects on gamma-ray detector performance. J. Electron. Mater. 33(6), 640 2004Google Scholar
51Szeles, C.: Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors. IEEE Trans. Nucl. Sci. 51(3), 1242 2004Google Scholar
52Kurvinen, K., Smolander, P., Pollanen, R., Kuutkankorpi, S., Kettunen, M., Lyytinen, J.: Design of a radiation surveillance unit for an unmanned aerial vehicle. J. Environ. Radioact. 81(1), 1 2005Google Scholar
53Mortreau, P., Berndt, R.: Determination of 235U enrichment with a large volume CZT detector. Nucl. Instrum. Methods Phys. Res., Sect. A 556, 219 2006Google Scholar
54Ugucioni, J.C., Ferreira, M., Fajardo, F., Mulato, M.: Growth of mercuric iodide crystals. Braz. J. Phys. 36(2A), 274 2006CrossRefGoogle Scholar
55Oliveira, I.B., Costa, F.E., Armelin, M.J., Cardoso, L.P., Hamada, M.M.: Purification and growth of PbI2 crystals: Dependence of the radiation response on the PbI2 crystal purity. IEEE Trans. Nucl. Sci. 49(4), 1968 2002CrossRefGoogle Scholar
56Nason, D., Keller, L.: The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport. J. Cryst. Growth 156(3), 221 1995Google Scholar
57Matsumoto, M., Hitomi, K., Shoji, T., Hiratate, Y.: Bismuth tri-iodide crystal for nuclear radiation detectors. IEEE Trans. Nucl. Sci. 49(5), 2517 2002Google Scholar
58Kozlov, V., Leskela, M., Sipila, H.: Annealing and characterisation of TlBr crystals for detector applications. Nucl. Instrum. Methods Phys. Res. A 546(1–2), 200 2005Google Scholar
59Onodera, T., Hitomi, K., Shoji, T., Hiratate, Y., Kitaguchi, H.: Spectroscopic performance of pixellated thallium bromide detectors. IEEE Trans. Nucl. Sci. 52(5), 1999 2005CrossRefGoogle Scholar
60Meng, L.J., He, Z., Alexander, B., Sandoval, J.: Spectroscopic performance of thick HgI2 detectors. IEEE Trans. Nucl. Sci. 53(3), 1706 2006Google Scholar
61Peurrung, A.J.: Recent developments in neutron detection. Nucl. Instrum. Methods Phys. Res. A 443(2–3), 400 2000Google Scholar
62Petrillo, C.: Solid state neutron detectors. Nucl. Instrum. Methods Phys. Res. A 378, 541 1996CrossRefGoogle Scholar
63McGregor, D.S.: Semi-insulating bulk GaAs as a semiconductor thermal-neutron imaging device. Nucl. Instrum. Methods Phys. Res. A 380, 271 1996Google Scholar
64Manfredotti, C., Giudice, A.L., Fasolo, F., Vittone, E., Paolini, C., Fizzotti, F., Zanini, A., Wagner, G., Lanzieri, C.: SiC detectors for neutron monitoring. Nucl. Instrum. Methods Phys. Res. A 552(1–2), 131 2005CrossRefGoogle Scholar
65Flammang, R.W., Seidel, J.G., Ruddy, F.H.: Fast neutron detection with silicon carbide semiconductor. Nucl. Instrum. Methods Phys. Res. A 479, 177 2007CrossRefGoogle Scholar
66Marinelli, M., Milani, E., Prestopino, G., Scoccia, M., Tucciarone, A., Verona-Rinati, G., Angelone, M., Pillon, M., Lattanzi, D.: High performance 6LiF–diamond thermal neutron detectors. Appl. Phys. Lett. 89(14), 143509 (2006, DOI: 10.1063/1.2356993)CrossRefGoogle Scholar
67Chao, J.H., Niu, H.: Measurement of neutron dose by a moderating germanium detector. Nucl. Instrum. Methods Phys. Res. A 385(1), 161 1997Google Scholar
68McGregor, D.S., Lindsay, J.T., Olsen, R.W.: Thermal neutron detection with cadmium1−x zincx telluride semiconductor detectors. Nucl. Instrum. Methods Phys. Res. A 381(2–3), 498 1996Google Scholar
69Caruso, A.N., Dowben, P.A., Balkir, S., Schemm, N., Osberg, K., Fairchild, R.W., Flores, O.B., Balaz, S., Harken, A.D., Robertson, B.W., Brand, J.I.: The all boron carbide diode neutron detector: Comparison with theory. Mater. Sci. Eng., B 135(2), 129 2006CrossRefGoogle Scholar
70Berheide, M., Roscoe, B.: Scintillators for Geophysical Exploration, 9th International Conference on Inorganic Scintillators and Their Applications (SCINT 2007) Wake Forest University, Winston-Salem, North Carolina, 4–8 June 2007 (IEEE, Piscataway, NJ, 2007Google Scholar
71Wilkerson, F.: Scintillators, in Emission Tomography: The Fundamentals of PET and SPECT edited by M. Wemicak and J. Aarvold (Elsevier Academic Press, St. Louis, MO, 2004) p. 229CrossRefGoogle Scholar
72Dorenbos, P., de Haas, J.T.M., van Eijk, C.W.E.: Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Trans. Nucl. Sci. 42, 2190 1995Google Scholar
73Moszynski, M.: Energy resolution of scintillation detectors.Proc. SPIE,5922, 592205 2005Google Scholar
74Moses, W.W.: Current trends in scintillator detectors and materials. Nucl. Instrum. Methods Phys. Res. A 487, 123 2002Google Scholar
75van Eijk, C.W.E., Dorenbos, P., van Loef, E.V.D., Kramer, K., Gudel, H.U.: Energy resolution of some new inorganic-scintillator gamma-ray detectors. Radiat. Meas. 32, 521 2001Google Scholar
76Jaffe, J.E., Jordan, D.V., Peurrung, A.J.: Energy nonlinearity in radiation detection materials: Causes and consequences. Nucl. Instrum. Methods Phys. Res. A 570, 72 2007Google Scholar
77Valentine, J.D., Rooney, B.D.: Design of a Compton spectrometer experiment for studying scintillator nonlinearity and intrinsic energy resolution. Nucl. Instrum. Methods Phys. Res. A 353, 37 1994Google Scholar
78Mengesha, W., Taulbee, T.D., Rooney, B.D., Valentine, J.D.: Light yield nonproportionality of CsI(Tl), CsI(Na), and YAP. IEEE Trans. Nucl. Sci. 45(3), 456 1998Google Scholar
79Valentine, J.D., Rooney, B.D., Dorenbos, P.: More on the scintillation response of NaI(Tl). IEEE Trans. Nucl. Sci. 45(3), 1750 1998Google Scholar
80Lempicki, A., Wojtowicz, A.J., Bermin, E.: Fundamental limits of scintillator performance. Nucl. Instrum. Methods Phys. Res. A 333, 304 1993Google Scholar
81Robbins, D.J.: On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. J. Electrochem. Soc. 127, 2694 1980Google Scholar
82Rodnyi, P.A., Dorenbos, P., van Eijk, C.W.E.: Energy-loss in inorganic scintillators. Phys. Status Solidi B 187, 15 1995Google Scholar
83Dorenbos, P.: Light output and energy resolution of Ce3+-doped scintillators. Nucl. Instrum. Methods Phys. Res. A 486(1–2), 208 2002CrossRefGoogle Scholar
84Birks, J.B.: The Theory and Practice of Scintillation Counting Pergamon Press Oxford 1964Google Scholar
85Ely, J., Kouzes, R., Schweppe, J., Siciliano, E., Strachan, D., Weier, D.: The use of energy windowing to discriminate SNM from NORM in radiation portal monitors. Nucl. Instrum. Methods Phys. Res. A 560, 373 2006Google Scholar
86Hofstadter, R.: Alkali halide scintillation counters. Phys. Rev. 74, 100 1948Google Scholar
87Hofstadter, R.: Twenty-five years of scintillation counting. IEEE Trans. Nucl. Sci. 22(1), 13 1975Google Scholar
88McIntyre, J.A., Hofstadter, R.: Measurement of gamma-ray energies with one crystal. Phys. Rev. 78, 617 1950Google Scholar
89Harihar, P., Knudson, A.R., Stapor, W.J., Campbell, A.B.: Rise-time spectroscopy of nuclear radiations in a CsI(Tl) scintillator. Nucl. Instrum. Methods Phys. Res. A 283, 62 1989Google Scholar
90Moszynski, M., Kapusta, M., Mayhugh, M., Wolski, D., Flyckt, S.O.: Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44(3), 1052 1997Google Scholar
91Weber, M.J., Monchamp, R.R.: Luminescence of Bi4Ge3O12 spectral and decay properties. J. Appl. Phys. 44(12), 5495 1973Google Scholar
92Laval, M., Moszynski, M., Allemand, R., Cormoreche, E., Guinet, P., Ordu, R., Vacher, J.: Barium fluoride—Inorganic scintillator for subnanosecond timing. Nucl. Instrum. Methods Phys. Res., Sect. A 206, 169 1983CrossRefGoogle Scholar
93Golovin, A.V., Zakharov, N.G., Rodnyi, P.A.: Mechanism of short-wavelength luminescence of barium fluoride. Opt. Spectrosc. 65(1), 102 1988Google Scholar
94Novotny, R.: Inorganic scintillators—A basic material for instrumentation in physics. Nucl. Instrum. Methods Phys. Res., Sect. A 537, 1 2005CrossRefGoogle Scholar
95van Eijk, C.W.E.: Fast lanthanide doped inorganic scintillators. SPIE Proc. 2706, 158 1996Google Scholar
96Baccaro, S., Blazek, K., de Notaristefani, F., Maly, P., Mares, J.A., Pani, R., Pellgrini, R., Soluri, A.: Scintillation properties of YAP:Ce. Nucl. Instrum. Methods Phys. Res., Sect. A 361, 209 1995Google Scholar
97Moszynski, M., Kapusta, M., Wolski, D., Klamra, W., Cederwall, B.: Properties of the YAP:Ce scintillator. Nucl. Instrum. Methods Phys. Res., Sect. A 404, 157 1998Google Scholar
98Guerra, A. Del, de Notaristefani, F., Di Domenico, G., Zavattini, G.: Measurement of absolute light yield and determination of a lower limit for the light attenuation length for YAP:Ce crystal. IEEE Trans. Nucl. Sci. 44(6), 2415 1997Google Scholar
99Vilardi, I., Braem, A., Chesi, E., Ciocia, F., Colonna, N., Corsi, F., Cusanno, F., De Leo, R., Dragone, A., Garibaldi, F., Joram, C., Lagamba, L., Marrone, S., Nappi, E., Seguinot, J., Tagliente, G., Valentini, A., Weilhammer, P., Zaidi, H.: Optimization of the effective light attenuation length of YAP:Ce and LYSO:Ce crystals for a novel geometrical PET concept. Nucl. Instrum. Methods Phys. Res., Sect. A 564(1), 506 2006Google Scholar
100Wojtowicz, A.J.: Scintillation mechanism: The significance of variable valence and electron-lattice coupling in R.E.-activatedscintillators in Proceedings of the International Conference on Inorganic Scintillators and Their Applications (SCINT95),, edited by P. Dorenbos and C.W.E. van Eijk (Delft University Press, The Netherlands, 1996), p. 95Google Scholar
101Lempicki, A., Brecher, C., Wisniewski, D., Zych, E., Wohtowicz, A.J.: Lutetium aluminate: Spectroscopic and scintillation properties. IEEE Trans. Nucl. Sci. 43(3), 1316 1996Google Scholar
102Moses, W.W., Derenzo, S.E., Fyodorov, A., Korzhik, M., Gektin, A., Minkov, B., Aslanov, V.: LuAlO3:Ce—A high speed scintillator for gamma detection. IEEE Trans. Nucl. Sci. 42(4), 275 1995Google Scholar
103Shah, K.S., Bennett, P., Squillante, M.R.: Gamma-ray detection properties of lutetium aluminate scintillators. IEEE Trans. Nucl. Sci. 43(3), 1267 1996Google Scholar
104Balcerzyk, M., Moszynski, M., Kapusta, M., Wolski, D.: YSO, LSO, GSO and LGSO: A study of energy resolution and nonproportionality. IEEE Trans. Nucl. Sci. 47(4), 1319 2000Google Scholar
105Melcher, C.L., Schweitzer, J.S.: A promising new scintillator—Cerium-doped lutetium oxyorthosilicate. Nucl. Instrum. Methods Phys. Res. A 314, 212 1992Google Scholar
106Kurashige, K., Gunji, A., Kamada, M., Shimura, N., Ishibashi, H., Yoshida, K., Senguttuvan, N., Sumiya, K., Shimizu, S., Murayama, H.: Large GSO single crystals with a diameter of 100 mm and their scintillation performance. IEEE Trans. Nucl. Sci. 51(3), 742 2004Google Scholar
107Cherepy, N.J., Hull, G., Drobshoff, A.D., Payne, S.A., Van Leof, E.V., Wilson, C.M., Shah, K.S., Roy, U.N., Burger, A., Boatner, L.A., Choong, W-S., Moses, W.W.: Strontium and barium iodide high light yield scintillators. Appl. Phys. Lett. 91, 083508 2008Google Scholar
108Guillot-Noel, O., de Haas, J.T.M., Dorenbos, P., van Eijk, C.W.E., Kramer, K., Gudel, H.U.: Optical and scintillation properties of cerium-doped LaCl3, LuBr3, and LuCl3. J. Lumin. 85, 21 1999Google Scholar
109Kramer, K.W., Dorenbos, P., Gudel, H.U., van Eijk, C.W.E.: Development and characterizations of highly efficient new cerium doped rare earth halide scintillator materials. J. Mater. Chem. 16, 2773 2006Google Scholar
110Spijker, J.C. van’t, Dorenbos, P., de Haas, J.T.M., van Eijk, C.W.E., Gudel, H.U., Kramer, K.: Scintillation properties of K2LaCl5 with Ce doping. Radiat. Meas. 24(4), 379 1995Google Scholar
111van Eijk, C.W.E.: New inorganic scintillators—Aspects of energy resolution. Nucl. Instrum. Methods Phys. Res. A 471, 244 2001Google Scholar
112van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Kramer, K., Gudel, H.U.: Scintillation properties of LaCl3:Ce3+ crystals: Fast, efficient, and high-energy resolution scintillators. IEEE Trans. Nucl. Sci. 48(3), 341 2001Google Scholar
113Shah, K.S., Glodo, J., Klugerman, M., Higgins, W., Gupta, T., Wong, P.: High energy resolution scintillation spectrometers. IEEE Trans. Nucl. Sci. 51(5), 2395 2004Google Scholar
114van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Kramer, K., Gudel, H.U.: High-energy-resolution scintillator: Ce3+ activated LaBr3. Appl. Phys. Lett. 79(10), 1573 2001Google Scholar
115Bessiere, A., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., Gudel, H.U., de Donega, C. Mello, Meijerink, A.: Luminescence and scintillation properties of the small band gap compound LaI3:Ce3+. Nucl. Instrum. Methods Phys. Res. A 537, 22 2005Google Scholar
116Birowosuto, M.D., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., Gudel, H.U.: High-light-output scintillator for photodiode readout: LuI3:Ce3+. J. Appl. Phys. 99, 123520 2006Google Scholar
117Birowosuto, M.D., Dorenbos, P., van Eijk, C.W.E.: PrBr3:Ce3+: A new fast lanthanide trihalide scintillator. IEEE Trans. Nucl. Sci. 53(5), 3028 2006CrossRefGoogle Scholar
118Glodo, J., Higgins, W.M., van Loef, E.V.D., Shah, K.S.: GdI3:Ce—A new gamma and neutron scintillator in Proceedings of the IEEE Nuclear Science Symposium Medical Imaging Conference, San Diego, (2006), p. 1574Google Scholar
119Shah, K.S., Glodo, J., Higgins, W., van Loef, E.V.D., Moses, W.W., Derenzo, S.E., Weber, M.J.: CeBr3 scintillators for gamma-ray spectroscopy. IEEE Trans. Nucl. Sci. 52(6), 3157 2005Google Scholar
120van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., Gudel, H.U.: Optical and scintillation properties of pure and Ce3+ doped GdBr3. Opt. Commun. 189, 297 2001Google Scholar
121van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., Gudel, H.U.: Properties and mechanism of scintillation in LuCl3:Ce3+ and LuBr3:Ce3+ crystals. Nucl. Instrum. Methods Phys. Res. A 496, 138 2003Google Scholar
122Iltis, A., Mayhugh, M.R., Menge, P., Rozsa, C.M., Selles, O., Solovyev, V.: Lanthanum halide scintillators: Properties and applications. Nucl. Instrum. Methods Phys. Res. A 563, 359 2006Google Scholar
123Milbrath, B.D., Runkle, R.C., Hossbach, T.W., Kaye, W.R., Lepel, E.A., McDonald, B.S., Smith, L.E.: Characterization of alpha contamination in lanthanum trichloride scintillators using coincidence measurements. Nucl. Instrum. Methods Phys. Res. A 547(2–3), 504 2005Google Scholar
124Milbrath, B.D., McIntyre, J.I., Runkle, R.C., Smith, L.E.: Contamination studies of LaCl3:Ce scintillators. IEEE Trans. Nucl. Sci. 53(5), 3031 2006CrossRefGoogle Scholar
125Kuhn, A., Surti, S., Karp, J.S., Muehllehner, G., Newcomer, F.M., VanBerg, R.: Performance assessment of pixelated LaBr3 detector modules for time-of-flight PET. IEEE Trans. Nucl. Sci. 53(3), 1090 2006Google Scholar
126Gonzalez, R., Perez, J.M., Vela, O., de Burgos, E.: Performance comparison of a large volume CZT semiconductor detector and a LaBr3(Ce) scintillator detector. IEEE Trans. Nucl. Sci. 53(4), 2409 2006Google Scholar
127Milbrath, B.D., Choate, B.J., Fast, J.E., Hensley, W.K., Kouzes, R.T., Schweppe, J.E.: Comparison of LaBr3:Ce and NaI(Tl) scintillators for radio-isotope identification devices. Nucl. Instrum. Methods Phys. Res., Sect. A 572, 774 2007Google Scholar
128Syntfeld, A., Arlt, R., Gostilo, V., Loupilov, A., Moszynski, M., Nassalski, A., Swoboda, M., Wolski, D.: Comparison of a LaBr3(Ce) scintillation detector with a large volume CdZnTe detector. IEEE Trans. Nucl. Sci. 53(6), 3938 2006Google Scholar
129Kraft, S., Buis, E-J., Maddox, E., Owens, A., Quarati, F., Pieter, D., Bos, A., de Haas, J.T.M., Brouwer, H., Dathy, C., Ouspenski, V., Brandenburg, S., Ostendorf, R.Development and characterization of large La-halide gamma-ray scintillators for future planetary missions. IEEE Trans. Nucl. Sci. 54(4), 873 2007Google Scholar
130Konishi, D., Uozumi, Y., Yoshida, H., Matoba, M.: Response of GSO scintillator to thermal neutrons. Nucl. Instrum. Methods Phys. Res., Sect. A 420, 467 1999CrossRefGoogle Scholar
131Reeder, P.L.: Neutron detection using GSO scintillator. Nucl. Instrum. Methods Phys. Res., Sect. A 340, 371 1994Google Scholar
132Ryzhikov, V., Nagornaya, L., Volkov, V., Chernikov, V., Zelenskaya, O.: Thermal neutron detectors based on complex oxide crystals. Nucl. Instrum. Methods Phys. Res., Sect. A 486, 156 2002CrossRefGoogle Scholar
133Britvich, G.I., Vasil’Chenko, V.G., Gilitsky, Y.V., Chubenko, A.P., Kushnirenko, A.E., Mamidzhanyan, E.A., Pavluchenko, V.P., Pikalov, V.A., Romakhin, V.A., Soldatov, A.P., Sumaneev, O.V., Chernichenko, S.K., Shein, I.V., Shepetov, A.L.: A neutron detector on the basis of a boron-containing plastic scintillator. Nucl. Instrum. Methods Phys. Res., Sect. A 550, 343 2005Google Scholar
134Normand, S., Mouanda, B., Haan, S., Louvel, M.: Discrimination methods between neutron and gamma rays for boron loaded plastic scintillators. Nucl. Instrum. Methods Phys. Res., Sect. A 484, 342 2002Google Scholar
135Scintillation crystals., http://www.scionixusa.com/pages/navbar/scin_crystals.html (accessed March 6, 2007).Google Scholar
136Syntfeld, A., Moszynski, M., Arlt, R., Balcerzyk, M., Kapusta, M., Majorov, M., Marcinkowski, R., Schotanus, P., Swoboda, M., Wolski, D.: 6Li(Eu) in neutron and γ-ray spectrometry—A highly sensitive thermal neutron detector. IEEE Trans. Nucl. Sci. 52(6), 3151 2005Google Scholar
137van Eijk, C.W.E., Bessiere, A., Dorenbos, P.: Inorganic thermalneutron scintillators. Nucl. Instrum. Methods Phys. Res., Sect. A 529, 260 2004Google Scholar
138Bliss, M., Brodzinski, R.L., Craig, R.A., Geelhood, B.D., Knopf, M.A., Miley, H.S., Perkins, R.W., Reeder, P.L., Sunberg, D.S., Warner, R.A., Wogman, N.A.: Glass-fiber-based neutron detectors for high- and low-flux environments. Proc. SPIE, 2551, 108 1995Google Scholar
139Ishii, M., Kuwano, Y., Asai, T., Asaba, S., Kawamura, M., Senguttuvan, N., Hayashi, T., Kobayashi, M., Nikl, M., Hosoya, S., Sakai, K., Adachi, T., Oku, T., Shimizu, H.M.: Boron based oxide scintillation glass for neutron detection. Nucl. Instrum. Methods Phys. Res., Sect. A 539, 282 2005Google Scholar
140Chaminade, J.P., Viraphong, O., Guillen, F., Fouassier, C., Czirr, B.: Crystal growth and optical properties of new neutron detectors Ce3+:6LiR(BO3)3 (R = Gd, Y). IEEE Trans. Nucl. Sci. 48(4), 1158 2001Google Scholar
141Chernikov, V.V., Dubovik, M.F., Gavrylyuk, V.P., Grinyov, B.V., Grin, L.A., Korshikova, T.I., Shekhovtsov, A.N., Sysoeva, A.P., Tolmachev, A.V., Zelenskaya, O.V.: Peculiarities of scintillation parameters of some complex composition borate single crystals. Nucl. Instrum. Methods Phys. Res. A 498, 424 2003Google Scholar
142Combes, C.M., Dorenbos, P., Hollander, R.W., van Eijk, C.W.E.: A thermal-neutron scintillator with n/g discrimination. Nucl. Instrum. Methods Phys. Res. A 416, 364 1998Google Scholar
143Reeder, P.L., Bowyer, S.M.: Neutron/gamma discrimination in LiBaF3 scintillator. J. Radioanal. Nucl. Chem. 248(3), 707 2001Google Scholar
144Bessiere, A., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., Gudel, H.U.: Luminescence and scintillation properties of Cs2LiYCl6:Ce3+ for g and neutron detection. Nucl. Instrum. Methods Phys. Res. A 537, 242 2005Google Scholar
145Bessiere, A., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., Gudel, H.U.: New thermal neutron scintillators: Cs2LiYCl6:Ce3+ and Cs2LiYBr6:Ce3+. IEEE Trans. Nucl. Sci. 51(5), 2970 2004Google Scholar
146Nikl, M.: Scintillation detectors for x-rays. Meas. Sci. Technol. 17, R37 2006Google Scholar
147Rossner, W., Grabmaier, B.C.: Phosphors for x-ray detectors in computed tomography. J. Lumin. 48–49, 29 1991Google Scholar
148van Eijk, C.W.E.: Inorganic scintillators in medical imaging detectors. Nucl. Instrum. Methods Phys. Res. A 509, 17 2003Google Scholar
149Greskovich, C., Duclos, S.: Ceramic scintillators. Annu. Rev. Mater. Sci. 27, 69 1997Google Scholar
150Lempicki, A., Brecher, C., Szupryczynski, P., Lingertat, H., Nagarkar, V.V., Tipnis, S.V., Miller, S.R.: A new lutetia-based ceramic scintillator for x-ray imaging. Nucl. Instrum. Methods Phys. Res. A 488, 579 2002Google Scholar
151Yamada, H., Suzuki, A., Uchida, Y., Yoshida, M., Yamamoto, H.: A scintillator Gd2O2S:Pr,Ce,F for x-ray computed tomography. J. Electrochem. Soc. 136(9), 2713 1989Google Scholar
152van Leof, E.V., Higgins, W.M., Glodo, J., Brecher, C., Lempicki, A., Venkataramani, V., Moses, W.W., Derenzo, S.E., Shah, K.S.: Scintillation properties of SrHfO3:Ce3+ and BaHfO3:Ce3+ ceramics. IEEE Trans. Nucl. Sci. 54(3), 741 2007Google Scholar
153Ji, Y., Jiang, D., Shi, J.: La2Hf2O7:Ti4+ ceramic scintillator for x-ray imaging. J. Mater. Res. 20, 567 2005Google Scholar
154Macedo, Z.S., Silva, R.S., Valerio, M.E.G., Martinez, A.L., Hernandes, A.C.: Laser-sintered bismuth germanate ceramics as scintillator devices. J. Am. Ceram. Soc. 87(6), 1076 2004CrossRefGoogle Scholar
155Mansuy, C., Nedelec, J-M., Machiou, R.: Molecular design of inorganic scintillators: From alkoxides to scintillating materials. J. Mater. Chem. 14, 3274 2004Google Scholar
156Garcia-Murillo, A., Luyer, C. Le, Dujardin, C., Martin, T., Garapon, C., Pedrini, C., Mugnier, J.: Elaboration and scintillation properties of Eu3+-doped Gd2O3 and Lu2O3 sol-gel films. Nucl. Instrum. Methods Phys. Res. A 486, 181 2002Google Scholar
157Lennstrom, K., Limmer, S.J., Cao, G.: Synthesis of cadmium tungstate films via sol-gel processing. Thin Solid Films 434, 55 2003Google Scholar
158Shang, H., Wang, Y., Milbrath, B.D., Bliss, M., Cao, G.: Doping effects in nanostructured cadmium tungstate scintillation films. J. Lumin. 121, 527 2006CrossRefGoogle Scholar
159Im, H-J., Willis, C., Saengkerdsub, S., Makote, R., Pawel, M.D., Dai, S.: Scintillators for alpha and neutron radiations synthesized by room temperature sol-gel processing. J. Sol-Gel Sci. Technol. 32, 117 2004Google Scholar
160Cooke, D.W., Lee, J.K., Bennett, B.L., Groves, J.R., Jacobsohn, L.G., McKigney, E.A., Muenchausen, R.E., Nastasi, M., Sickafus, K.E., Tang, M., Valdez, J.A., Kim, J.Y., Hong, K.S.: Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5:Ce nanophosphors. Appl. Phys. Lett. 88, 103 2006Google Scholar
161Jia, W., Liu, H., Felofilov, S.P., Meltzer, R.S., Jiao, J.: Spectroscopic study of Eu3+-doped and Eu3+,Y3+-codoped SiO2 sol-gel glasses. J. Alloys Compd. 311, 11 2000Google Scholar
162Meltzer, R.S., Yen, W.M., Zheng, H., Feofilov, S.P., Dejneka, M.J., Tissue, B., Yuan, H.B.: Effect of the matrix on the radiative lifetimes of rare earth doped nanoparticles embedded in matrices. J. Lumin. 94–95, 217 2001Google Scholar
163Strek, W., Zych, E., Hreniak, D.: Size effects on optical properties of Lu2O3:Eu3+ nanocrystallites. J. Alloys Compd. 344, 332 2002Google Scholar
164Shmurak, S.Z., Strukova, G.K., Smyt’ko, I.M., Klassen, N.V., Kobelev, N.P., Derenzo, S.E., Weber, M.J.: Studies of nanocrystalline rare earth gallate and aluminate scintillators prepared by a new method. Nucl. Instrum. Methods Phys. Res., Sect. A 537, 149 2005Google Scholar
165Campbell, I.H., Crone, B.K.: Quantum-dot/organic semiconductor composites for radiation detection. Adv. Mater. 18, 77 2006Google Scholar
166Létant, S.E., Wang, T.F.: Semiconductor quantum dot scintillation under gamma-ray irradiation. Nano Lett. 6, 2877 2006Google Scholar
167Reed, M.D., Szeles, C., Cameron, S.E.: Computational modeling of heat transport in a multi-zone high-pressure vertical electro-dynamic gradient CdZnTe furnace. J. Cryst. Growth 289(2), 494 2006Google Scholar
168Scheel, H.J.: The development of crystal growth technology in Crystal Growth Technology, edited by H.J. Scheel and T. Fukuda (Wiley & Sons, New York, 2003)CrossRefGoogle Scholar
169Akai, S., Yokogawam, M.: Bulk crystal growth in Handbook of Compound Semiconductors—Growth, Processing, Characterization and Devices,, edited by P.H. Halloway and G.E. McGuire (Noyes Publications, Park Ridge, NJ, 1995), pp. 1–27Google Scholar
170Holland, L.R.: Sealed silica pressure ampoules for crystal growth. J. Cryst. Growth 66, 501 1984Google Scholar
171Harrison, M.J., Graebner, A.P., McNeil, W.J., McGregor, D.S.: Carbon coating of fused silica ampoules. J. Cryst. Growth 290, 597 2006Google Scholar
172Kuppurao, S., Brandon, S., Derby, J.J.: Modeling the vertical Bridgman growth of cadmium zinc telluride. I. Quasi-steady analysis of heat transfer and convection. J. Cryst. Growth 155, 93 1995Google Scholar
173Komar, V., Gektin, A., Nalivaiko, D., Klimenko, I., Migal, V., Panchuk, O., Rybka, A.: Characterization of CdZnTe crystals grown by HPB method. Nucl. Instrum. Methods Phys. Res., Sect. A 458(1–2), 113 2001Google Scholar
174Berding, M.A.: Native defects in CdTe. Phys. Rev. B 60(12), 8943 1999Google Scholar
175Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77 2001Google Scholar
176Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.J., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science 285, 1537 1999Google Scholar
177Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553 1994Google Scholar
178Deng, Y.P., Guan, Y.F., Fowlkes, J.D., Wen, S.Q., Liu, F.X., Pharr, G.M., Liaw, P.K., Liu, C.T., Rack, P.D.: A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses. Intermetallics 15(9), 1208 2007Google Scholar
179Ferris, K.F., Peurrung, L.M., Marder, J.M.: Materials informatics: Fast track to new materials. Adv. Mater. Processes 165(1), 50 2007Google Scholar
180Webb-Robertson, B.M., Ferris, K.F., Jones, D.M.: Design rules for Ce-activated scintillating radiation detection materials: Compromises between luminosity and stopping power. IEEE Trans. Nucl. Sci.,55(3), 1210 2008Google Scholar
181Moses, W.W., Derenzo, S.E., Weber, M.J., Blankespoor, S.C., Ho, M.H., West, A.C.: Scintillator characterization using the LBL pulsed x-ray facility. Radiat. Meas. 24(4), 37 1995Google Scholar
182Zhang, Y., Gao, F., Devanathan, R., Weber, W.J.: A fast screening technique to evaluate detector response. Nucl. Instrum. Methods Phys. Res., Sect. A 579(1), 108 2007Google Scholar
183Zhang, Y., Milbrath, B.D., Weber, W.J., Elfman, M., Whitlow, H.J.: Radiation detector resolution over a continuous energy range. Appl. Phys. Lett. 91, 094105 2007Google Scholar
184Danevich, F.A., Georgadze, A.S., Kobychev, V.V., Kropivyansky, B.N., Nagorny, S.S., Nikolaiko, A.S., Poda, D.V., Tretyak, V.I., Vyshnevskyi, I.M., Yurchenko, S.S., Grinyov, B.V., Nagornaya, L.L., Pirogov, E.N., Ryzhikov, V.D., Brudanin, V.B., Vylov, T., Federov, A., Korzhik, M., Lobko, A., Missevitch, O.: Application of PbWO4 crystal scintillators in experiment to search for 2b decay of 116Cd. Nucl. Instrum. Methods Phys. Res., Sect. A 556, 259 2006Google Scholar
185Saint-Gobain CrystalsPhysical Properties of Common Inorganic Scintillators. http//www.detectors.saint-gobain.com/Media/Documents/S0000000000000001004/SGC_Scintillation_Properties_Chart.pdf (Saint-Gobain Crystals, Newbury, OH, 2007) (accessed Sep. 30, 2007)Google Scholar