Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T00:52:13.172Z Has data issue: false hasContentIssue false

Phase development during mixed-oxide processing of a [Na0.5K0.5NbO3]1−x–[LiTaO3]x powder

Published online by Cambridge University Press:  31 January 2011

T.A. Skidmore
Affiliation:
Institute for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
S.J. Milne*
Affiliation:
Institute for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
*
a)Address all correspondence to this author. e-mail: s.j.milne@leeds.ac.uk
Get access

Abstract

Powders of the solid lead-free piezoelectric ceramic solution [Na0.5K0.5NbO3]1−x–[LiTaO3]x, x = 0.06, were produced using a mixed-oxide process. Phase analysis indicated the formation of an orthorhombic solid solution at 800 °C, which coexisted with intermediate binary niobate and tantalate phases. A tetragonal main-phase solid solution was formed at ⩾950 °C, along with minor quantities of a tungsten bronze phase. Addition of 3 wt% excess alkali carbonates to the starting powders allowed the orthorhombic solid solution to be retained to 1100 °C and prevented formation of the secondary tungsten bronze phase. Elemental chemical analysis confirmed changes in alkali oxide composition, consistent with volatilization losses, particularly of potassium and lithium oxides. Phase stability near the reported morphotropic phase boundary is shown to be sensitive to alkali oxide content.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1European Council Directive 2002/95/EC of the European Parliament and Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off. J. Eur. Union L37, 19 2003Google Scholar
2IEEE IEEE Standard on Piezoelectricity, ANSI/IEEE Standard No. 176 IEEE New York 1987Google Scholar
3Takenaka, T.Nagata, H.: Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25, 2693 2005CrossRefGoogle Scholar
4Yilmaz, H., Trolier-McKinstry, S.Messing, G.L.: (Reactive) Templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3–BaTiO3) ceramics—I. Processing. J. Electroceram. 11, 207 2003CrossRefGoogle Scholar
5Yilmaz, H., Trolier-McKinstry, S.Messing, G.L.: (Reactive) Templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3–BaTiO3) ceramics—II. Dielectric and piezoelectric properties. J. Electroceram. 11, 217 2003CrossRefGoogle Scholar
6Egerton, L.Dillon, D.M.: Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J. Am. Ceram. Soc. 42(9), 438 1959CrossRefGoogle Scholar
7Egerton, L.Jaeger, R.E.: Hot pressing of potassium–sodium niobates. J. Am. Ceram. Soc. 45(5), 209 1962Google Scholar
8Haertling, G.H.: Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50(6), 329 1967CrossRefGoogle Scholar
9Jaffe, B., Cook, W.R.Jaffe, H.: (eds.) Piezoelectric ceramics in Non-metallic Solids Academic Press London 1971 Vol. 3,Google Scholar
10Guo, Y., Kakimoto, K.Ohsato, H.: (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater. Lett. 59(2-3), 241 2005CrossRefGoogle Scholar
11Guo, Y., Kakimoto, K.Ohsato, H.: Phase transitional behaviour and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121 2004CrossRefGoogle Scholar
12Saito, Y., Takao, H., Tani, I., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T.Nakamura, M.: Lead-free piezoceramics. Nature 432, 84 2004CrossRefGoogle ScholarPubMed
13Saito, Y.Takao, H.: High performance lead-free piezoelectric ceramics in the (K,Na)NbO3–LiTaO3 solid solution system. Ferroelectrics 338, 17 2006CrossRefGoogle Scholar
14Zuo, R., Rödel, J., Chen, R.Li, L.: Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89(6), 2010 2006CrossRefGoogle Scholar
15Hollenstein, E., Davis, M., Damjanovic, D.Setter, N.: Piezoelectric properties of Li- and Ta-modified (Na0.5K0.5)NbO3 ceramics. Appl. Phys. Lett. 87(182905), 1 2005Google Scholar
16Li, J-F., Wang, K., Zhang, B-P.Zhang, L-M.: Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89(2), 706 2006CrossRefGoogle Scholar
17Wang, R., Xie, R-J., Hanada, K., Matsusaki, K., Bando, H.Itoh, M.: Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium–sodium niobate solid solution. Phys. Status Solidi 202(6), R57 2005Google Scholar
18Zhang, B-P., Li, J-F., Wang, K.Zhang, H.: Compositional dependence of piezoelectric properties in NaxK1−xNbO3 lead-free ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89(5), 1605 2006CrossRefGoogle Scholar
19Zang, G-Z., Wang, J-F., Chen, H-C., Su, W-B., Wang, C-M., Qi, P., Ming, B-Q., Du, J., Zheng, L-M., Zhang, S.Shrout, T.R.: Perovskite (Na0.5K0.5)1−x(LiSb)xNb1−xO3 lead-free piezoceramics. Appl. Phys. Lett. 88, 212908 2006CrossRefGoogle Scholar
20JCPDS No. 00-033-1270. International Center for Diffraction Data Newton Square PA 1980Google Scholar
21JCPDS No. 00-032-0822. International Center for Diffraction Data Newton Square PA 1981Google Scholar
22JCPDS No. 00-020-0631. International Center for Diffraction Data Newton Square PA 1968Google Scholar
23JCPDS No. 00-029-0836. International Center for Diffraction Data Newton Square PA 1977Google Scholar
24Ahtee, M.Glazer, A.M.: Lattice parameters and tilted octahedra in sodium–potassium niobate solid solutions. Acta Crystallogr. A32, 434 1976CrossRefGoogle Scholar
25JCPDS No. 00-034-0122. International Center for Diffraction Data Newton Square PA 1982Google Scholar
26JCPDS No. 00-052-0157. International Center for Diffraction Data Newton Square PA 1977Google Scholar
27Bomlai, P., Wichianrat, W., Muensit, S.Milne, S.J.: Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. J. Am. Ceram. Soc. 90(5), 1650 2007CrossRefGoogle Scholar
28JCPDS No. 01-071-0945. International Center for Diffraction Data Newton Square PA 1997Google Scholar
29JCPDS No. 00-016-0459. International Center for Diffraction Data Newton Square PA 1963Google Scholar
30Pelton, A.D., Bale, C.W.Lin, P.L.: Calculation of phase diagrams and thermodynamic properties of 14 additive and reciprocal ternary systems containing Li2CO3, Na2CO3, K2CO3, Li2SO4, Na2SO4, K2SO4, LiOH, NaOH, and KOH. Can. J. Chem. 62, 457 1984CrossRefGoogle Scholar
31Volkova, L.F.: Figure 1015 in Phase Diagrams for Ceramists edited by E.M. Levin, C.R. Robbins, and H.F. McMurdie The American Ceramic Society Westerville, OH 1964Google Scholar
32Kingon, A.I.Clark, J.B.: Sintering of PZT ceramics: I—Atmosphere control. J. Am. Ceram. Soc. 66(4), 253 1983CrossRefGoogle Scholar
33Kingon, A.I.Clark, J.B.: Sintering of PZT ceramics: II—Effect of PbO content on densification kinetics. J. Am. Ceram. Soc. 66(4), 256 1983CrossRefGoogle Scholar