Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-27T14:12:52.277Z Has data issue: false hasContentIssue false

Nonpolar and Semipolar Group III Nitride-Based Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

GaN and its alloys with InN and AlN are materials systems that have enabled the revolution in solid-state lighting and high-power/high-frequency electronics. GaN-based materials naturally form in a hexagonal wurtzite structure and are naturally grown in a (0001) c-axis orientation. Because the wurtzite structure is polar, GaN-based heterostructures have large internal electric fields due to discontinuities in spontaneous and piezoelectric polarization. For optoelectronic devices, such as light-emitting diodes and laser diodes, the internal electric field is generally deleterious as it causes a spatial separation of electron and hole wave functions in the quantum wells, which, in turn, likely decreases efficiency. Growth of GaN-based heterostructures in alternative orientations, which have reduced (semipolar orientations) or no polarization (nonpolar) in the growth direction, has been a major area of research in recent years. This issue highlights many of the key developments in nonpolar and semipolar nitride materials and devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Maruska, H.P., Tietjen, J.J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
2Maruska, H.P., Stevenson, D.A., Pankove, J.I., Appl. Phys. Lett. 22, 303 (1973).Google Scholar
3Amano, H., Sawaki, N., Akasaki, I., Toyoda, Y., Appl. Phys. Lett. 48, 333 (1986).Google Scholar
4Amano, H., Kito, M., Hiramatsu, K.I., Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
5Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
6Nakamura, S., Mukai, T., Senoh, M., Jpn. J. Appl. Phys. 30, L1998 (1991).Google Scholar
7Nakamura, S., Iwasa, N., Senoh, M., Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
8Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
9Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
10Bykhovski, A., Gelmont, B., Shur, M., J. Appl. Phys. 74, 6734 (1993).Google Scholar
11Chichibu, S., Azuhata, T., Sota, T., Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
12Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., Akasaki, I., Jpn. J. Appl. Phys. 36, L382 (1997).Google Scholar
13Im, J.S., Kollmer, H., Off, J., Sohmer, A., Scholz, F., Hangleiter, A., Phys. Rev. B 57, R9435 (1998).Google Scholar
14Resta, R., Ferroelectrics 136, 51 (1992).Google Scholar
15Kingsmith, R.D., Vanderbilt, D., Phys. Rev. B 47, 1651 (1993).Google Scholar
16Vanderbilt, D., Kingsmith, R.D., Phys. Rev. B 48, 4442 (1993).Google Scholar
17Resta, R., J. Phys.: Condens. Matter 12, R107 (2000).Google Scholar
18Resta, R., J. Mol. Struct. (Theochem.) 709, 201 (2004).Google Scholar
19Bernardini, F., Fiorentini, V., Vanderbilt, D., Phys. Rev. B 56, 10024 (1997).Google Scholar
20Eastman, L.F., Mishra, U.K., IEEE Spectrum 39 (5), 28 (2002).Google Scholar
21Mishra, U.K., Shen, L., Kazior, T.E., Wu, Y.-F., Proc. IEEE 96, 287 (2008).Google Scholar
22Shen, Y.C., Mueller, G.O., Watanabe, S., Gardner, N.F., Munkholm, A., Krames, M.R., Appl. Phys. Lett. 91, 141101 (2007).Google Scholar
23Maruska, H.P., Anderson, L.J., Stevenson, D.A., J. Electrochem. Soc. 121, 1202 (1974).Google Scholar
24Sano, M., Aoki, M., Jpn. J. Appl. Phys. 15 (10) 1943 (1976).Google Scholar
25Shintani, A., Minagawa, S., J. Electrochem. Soc. 123 (10) 1575 (1976).Google Scholar
26Madar, R., Michel, D., Jacob, G., Boulou, M., J. Cryst. Growth 40, 239 (1977).Google Scholar
27Sasaki, T., Zembutsu, S., J. Appl. Phys. 61 (7) 2533 (1987).Google Scholar
28Lei, T., Ludwig, K.F. Jr, Moustakas, T.D., J. Appl. Phys. 74 (7) 4430 (1993).Google Scholar
29Melton, W.A., Pankove, J.I., J. Cryst. Growth, 178, 168 (1997).Google Scholar
30Molnar, R.J., “Hydride Vapor Phase Epitaxial Growth of III-V Nitrides,” in Gallium Nitride (GaN) II, vol. 57 of Semiconductors and Semimetals, Pankove, J.I. and Moustakas, T.D. eds. (Elsevier, New York, 1998), pp. 131.Google Scholar
31Takeuchi, T., Amano, H., Akasaki, I., Jpn. J. Appl. Phys., Part 1 39, 413 (2000).Google Scholar
32Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M., Reiche, M., Ploog, K.H., Nature 406, 865 (2000).Google Scholar
33Craven, M.D., Lim, S.H., Wu, F., Speck, J.S., DenBaars, S.P., Appl. Phys. Lett. 81, 469 (2002).Google Scholar
34Ng, H.M., Appl. Phys. Lett. 80, 4369 (2002).Google Scholar
35Koida, T., Chichibu, S.F., Sota, T., Craven, M.D., Haskell, B.A., Speck, J.S., DenBaars, S.P., Nakamura, S., Appl. Phys. Lett. 84, 3768 (2004).Google Scholar
36Baker, T.J., Haskell, B.A., Wu, F., Fini, P.T., Speck, J.S., Nakamura, S., Jpn. J. Appl. Phys. 44, L920 (2005).Google Scholar
37Romanov, A.E., Baker, T.J., Nakamura, S., Speck, J.S., J. Appl. Phys. 100, 023522 (2006).Google Scholar
38Paskov, P., Schifano, R., Monemar, B., Paskova, T., Figge, S., Hommel, D., J. Appl. Phys. 98, 093519 (2005).Google Scholar
39Gardner, N.F., Kim, J.C., Wierer, J.J., Shen, Y.C., Krames, M.R., Appl. Phys. Lett. 86, 111101 (2002).Google Scholar
40Yamaguchi, A.A., Jpn. J. Appl. Phys. 46, L789 (2007).Google Scholar
41Funato, M., Ueda, M., Kawakami, Y., Narukawa, Y., Kosugi, T., Takahashi, M., Mukai, T., Jpn. J. Appl. Phys. 45, L659 (2006).Google Scholar
42Feezell, D.F., Schmidt, M.C., Farrell, R.M., Kim, K.C., Saito, M., Fujito, K., Cohen, D.A., Speck, J.S., DenBaars, S.P., Nakamura, S., Jpn. J. Appl. Phys. 46, L284 (2007).Google Scholar
43Ibbetson, J.P., Fini, P.T., Ness, K.D., DenBaars, S.P., Speck, J.S., Mishra, U.K.. Appl. Phys. Lett. 77, 250 (2000).Google Scholar
44Chakraborty, A., Haskell, B.A., Keller, S., Speck, J.S., DenBaars, S.P., Nakamura, S., Mishra, U.K., Appl. Phys. Lett. 85, 5143 (2004).Google Scholar
45Chakraborty, A., Haskell, B.A., Keller, S., Speck, J.S., DenBaars, S.P., Nakamura, S., Mishra, U.K., Jpn. J. Appl. Phys., Part 2 44, L173 (2005).Google Scholar
46Onuma, T., Koyama, T., Chakraborty, A., McLaurin, M., Haskell, B.A., Fini, P.T., Keller, S., DenBaars, S.P., Speck, J.S., Nakamura, S., Mishra, U.K., Sota, T., Chichibu, S.F., J. Vac. Sci. Technol. B 25, 1523 (2007).Google Scholar
47Koyama, T., Onuma, T., Masui, H., Chakraborty, A., Haskell, B.A., Keller, S., Mishra, U.K., Speck, J.S., Nakamura, S., DenBaars, S.P., Sota, T., Chichibu, S.F., Appl. Phys. Lett. 89, 091906 (2006).Google Scholar
48Okamoto, K., Ohta, H., Nakagawa, D., Sonobe, M., Ichihara, J., Takasu, H., Jpn. J. Appl. Phys. 45, L1197 (2006).Google Scholar
49Schmidt, M.C., Kim, K.C., Sato, H., Fellows, N., Nakamura, S., DenBaars, S.P., Speck, J.S., Jpn. J. Appl. Phys. 46, L126 (2007).Google Scholar
50Onuma, T., Amaike, H., Kubota, M., Okamoto, K., Ohta, H., Ichihara, J., Takasu, H., Chichibu, S.F., Appl. Phys. Lett. 91, 181903 (2007).Google Scholar
51Zhong, H., Tyagi, A., Fellows, N.N., Wu, F., Chung, R.B., Saito, M., Fujito, K., Speck, J.S., DenBaars, S.P., Nakamura, S., Appl. Phys. Lett. 90, 233504 (2007).Google Scholar
52Chichibu, S.F., Uedono, A., Onuma, T., Haskell, B.A., Chakraborty, A., Koyama, T., Fini, P.T., Keller, S., DenBaars, S.P., Speck, J.S., Mishra, U.K., Nakamura, S., Yamaguchi, S., Kamiyama, S., Amano, H., Akasaki, I., Han, J., Sota, T., Nat. Mater. 5, 810 (2006).Google Scholar
53Chichibu, S.F., Uedono, A., Onuma, T., Haskell, B.A., Chakraborty, A., Koyama, T., Fini, P.T., Keller, S., DenBaars, S.P., Speck, J.S., Mishra, U.K., Nakamura, S., Yamaguchi, S., Kamiyama, S., Amano, H., Akasaki, I., Han, J., Sota, T., Philos. Mag. 87, 2019 (2007).Google Scholar
54Schmidt, M.C., Kim, K.C., Farrell, R.M., Feezell, D.F., Cohen, D.A., Saito, M., Fujito, K., Speck, J.S., DenBaars, S.P., Nakamura, S., Jpn. J. Appl. Phys. 46, L190 (2007).Google Scholar
55Okamoto, K., Ohta, H., Chichibu, S.F., Ichihara, J., Takasu, H., Jpn. J. Appl. Phys. 46, L187 (2007).Google Scholar
56Okamoto, K., Tanaka, T., Kubota, M., Ohta, H., Jpn. J. Appl. Phys. 46, L820 (2007).Google Scholar
57Kubota, M., Okamoto, K., Tanaka, T., Ohta, H., Appl. Phys. Express 1, 011102 (2008).Google Scholar
58Tsuda, Y., Ohta, M., Vaccaro, P.O., Ito, S., Hirukawa, S., Kawaguchi, Y., Fujishiro, Y., Takahira, Y., Ueta, Y., Takakura, T., Yuasa, T., Appl. Phys. Express 1, 011104 (2008).Google Scholar
59Okamoto, K., Tanaka, T., Kubota, M., Appl. Phys. Express 1, 072201 (2008).Google Scholar
60Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Matsushita, T., Mukai, T., Appl. Phys. Lett. 76, 22 (2000).Google Scholar
61Nagahama, S., Yanamoto, T., Sano, M., Mukai, T., Jpn. J. Appl. Phys. 40, 3075 (2001).Google Scholar
62Rinke, P., Winkelnkemper, M., Qteish, A., Bimberg, D., Neugebauer, J., Scheffler, M., Phys. Rev. B 77, 07202 (2008).Google Scholar