Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T12:53:13.365Z Has data issue: false hasContentIssue false

Preparation and characterization of several group 12 element (Zn, Cd)-bis(thiolate) complexes and evaluation of their potential as precursors for 12–16 semiconducting materials

Published online by Cambridge University Press:  31 January 2011

William S. Rees Jr.*
Affiliation:
School of Chemistry and Biochemistry, and School of Materials Science and Engineering and Molecular Design Institute, Georgia Institute of Technology, Atlanta, Georgia 30332–0400
Gertrud Kräuter
Affiliation:
School of Chemistry and Biochemistry, and School of Materials Science and Engineering and Molecular Design Institute, Georgia Institute of Technology, Atlanta, Georgia 30332–0400
*
a) Address all correspondence to this author.
Get access

Abstract

Compounds of the general formula M(SR)2 (M = Zn, Cd; R = i-Pr, t-Bu, Bz) have been prepared and explored as potential unimolecular starting materials for the preparation of binary group 12 metal sulfides. These new compounds have been characterized by IR spectroscopy and thermogravimetric analysis. Chemical derivatization of these insoluble metal-bis(thiolate) compounds by complexation with N-CH3 -imidazole renders them more soluble. These adducts were investigated by elemental analysis. Thermolytic decompositions of both the parent and derivatized compounds have been carried out both in the solid state and by heating a suspension of the appropriate metal-bis(thiolate) compound in an inert high boiling hydrocarbon medium. The thermolysis products have been studied by GC/MS (liquids) and x-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and particle size determination (solids).

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ray, B., II–VI Compounds (Pergamon Press, Oxford, 1969), 229 pp.CrossRefGoogle Scholar
2.Cox, P. A., The Electronic Structure and Chemistry of Solids (Oxford University Press, Oxford, 1987), pp. 227228.CrossRefGoogle Scholar
3.Neukirch, U., Broser, I., and Rass, R., in Wide Gap II–VI Semiconductors: Proceedings of the E-MRS Advanced Research Workshop, Montpellier, 16–18 January 1991, edited by Triboulet, R., Aulombard, R.L., and Mullin, J.B. (Adam Hilger, Bristol, 1991); Semiconductor Sci. Tech. 6, A96–A100 (1991).Google Scholar
4.Wolverson, D., Halsall, M.P., and Davies, J.J., in Wide Gap II–VI Semiconductors: Proceedings of the E-MRS Advanced Research Workshop, Montpellier, 16–18 January 1991, edited by Triboulet, R., Aulombard, R.L., and Mullin, J.B. (Adam Hilger, Bristol, 1991); Semiconductor Sci. Tech. 6, A123–A126 (1991).Google Scholar
5.Rees, W.S. Jr, Kräuter, G., and Goedken, V.L., in Microcrystalline Semiconductors: Materials Science and Devices, edited by Fauchet, P.M., Tsai, C.C., Canham, L.T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, PA, 1993), pp. 859864Google Scholar
6.Rees, W.S. Jr, and Kräuter, G., in Covalent Ceramics II: Non-Oxides, edited by Barron, A.R., Fischman, G.S., Fury, M.A., and Hepp, A.F. (Mater. Res. Soc. Symp. Proc. 327, Pittsburgh, PA, 1994), pp. 314.Google Scholar
7.Kräuter, G., Favreau, P., Nunnally, B.K., and Rees, W.S. Jr, in Covalent Ceramics II: Non-Oxides, edited by Barron, A.R., Fischman, G.S., Fury, M.A., and Hepp, A.F. (Mater. Res. Soc. Symp. Proc. 327, Pittsburgh, PA, 1994), pp. 4146.Google Scholar
8.Kräuter, G., Goedken, V.L., Neumüller, B., and Rees, W.S. Jr, in Covalent Ceramics II: Non-Oxides, edited by Barron, A.R., Fischman, G.S., Fury, M.A., and Hepp, A.F. (Mater. Res. Soc. Symp. Proc. 327, Pittsburgh, PA, 1994), pp. 3540.Google Scholar
9.Rees, W.S. Jr, and Kräuter, G., Phosphorous, Sulfur, and Silicon 87, 219228 (1994).CrossRefGoogle Scholar
10.Mullin, J.B., Irvine, S.J.C., and Aohen, D.J., Cryst. Growth 55, 92 (1981).CrossRefGoogle Scholar
11.Wright, P.J., Cockayne, B., Jones, A.C., Orell, E.D., O'Brien, P., and Khan, O.F.Z., J. Cryst. Growth 94, 97 (1989).CrossRefGoogle Scholar
12.Wright, P.J., Cockayne, B., Parbrook, P.J., Oliver, P.E., and Jones, A.C., Cryst. Growth 108, 525 (1991).CrossRefGoogle Scholar
13.Mullin, J.B., Cole-Hamilton, D.J., Irvine, S.J.C., Hails, J.E., Giess, J., and Gough, J.S., J. Cryst. Growth 101, 1 (1990).CrossRefGoogle Scholar
14.Cowley, A.H. and Jones, R.A., Angew. Chem. Int. Engl. Ed. 28, 1208 (1989).CrossRefGoogle Scholar
15.Cowley, A.H. and Jones, R.A., Polyhedron 13, 1149 (1994).CrossRefGoogle Scholar
16.Hursthouse, M.B., Malik, M.A., Motevalli, M., and O'Brien, P., Organometallics 10, 730 (1991).CrossRefGoogle Scholar
17.Bochmann, M., Webb, K., Harman, M., and Hursthouse, M.B., Angew. Chem. Int. Engl. Ed. 29, 100 (1990).Google Scholar
18.Bochmann, M., Webb, K.J., Hails, J.E., and Wolverson, D., Eur. J. Solid State Inorg. Chem. 29, 155 (1992).Google Scholar
19.Bochmann, M., Coleman, A.P., and Powell, A.K., Polyhedron 11, 507 (1992).CrossRefGoogle Scholar
20.Dabbousi, B.O., Bonasia, P. J., and Arnold, J., J. Am. Chem. Soc. 113, 3186 (1991).CrossRefGoogle Scholar
21.Bonasi, P. J. and Arnold, J., Inorg. Chem. 31, 2508 (1992).CrossRefGoogle Scholar
22.Arnold, J., Walker, J.M., Yu, K.M., Bonasia, P.J., Seligson, A.L., and Bourret, E.D., J. Cryst. Growth 124, 647 (1992).CrossRefGoogle Scholar
23.Takahashi, Y., Yuki, R., Sugiura, M., Motojima, S., and Sugiyama, K., J. Cryst. Growth 50, 491 (1980).CrossRefGoogle Scholar
24.Evans, M.A.H. and Williams, J.O., Thin Solid Films 87, L1 (1982).CrossRefGoogle Scholar
25.Frigo, D.M., Khan, O.F.Z., and O'Brien, P., J. Cryst. Growth 6, 989 (1989).CrossRefGoogle Scholar
26.Saunders, A., Vecht, A., and Tyrell, G., Ternary Multiary Cmpd. Proc., Int. Conf. 7th 1986 (publ. 1987); Chem. Abs. 108, 66226h (1988).Google Scholar
27.Hursthouse, M.B., Malik, A.A., Motevalli, M., and O'Brien, P., Polyhedron 11, 45 (1992).CrossRefGoogle Scholar
28.Malik, M.A. and O'Brien, P., Mater. Chem. 3, 999 (1991).CrossRefGoogle Scholar
29.Hursthouse, M.B., Malik, M.A., Motevalli, M., and O'Brien, P., J. Mater. Chem. 2, 949 (1992).CrossRefGoogle Scholar
30.Malik, M. A., Motevalli, M., Saeed, T., and O'Brien, P., Adv. Mater. 5, 653 (1993).CrossRefGoogle Scholar
31.Pike, R.D., Cui, H., Kershaw, R., Dwuight, K., Wold, A., Blanton, T.N., Wernberg, A.A., and Gysling, H.J., Thin Solid Films 224, 221 (1993).CrossRefGoogle Scholar
32.O'Brien, P. and Trindade, T., J. Mater. Chem. 6, 343347 (1996).CrossRefGoogle Scholar
33.Parkin, I.P., Hector, A.L., Henshaw, G., and Shaw, G. A., Main Group Chem. 1, 183187 (1996).Google Scholar
34.Bochmann, M., Webb, K.J., Hursthouse, M.B., and Mazid, M., J. Chem. Soc. Dalton Trans., 2317 (1991).CrossRefGoogle Scholar
35.Brennan, J.G., Siegrist, T., Carroll, P.J., Stuczynski, S.M., Brus, L.E., and Steigerwald, M.L., J. Am. Chem. Soc. 111, 4141 (1989).CrossRefGoogle Scholar
36.Brennan, J.G., Siegrist, T., Carroll, P.J., Stuczynski, S.M., Reynders, P., Brus, L.E., and Steigerwald, M.L., Chem. Mater. 2, 403 (1990).CrossRefGoogle Scholar
37.Osakada, K. and Yamamoto, T., J. Chem. Soc. Chem. Commun., 1117 (1987).CrossRefGoogle Scholar
38.Osakada, K. and Yamamoto, T., Inorg. Chem. 30, 2328 (1991).CrossRefGoogle Scholar
39.Rees, W.S. Jr, and Barron, A.R., Adv. Mater. Opt. Elect. 2, 271288 (1993).Google Scholar
40.Rees, W.S. Jr, and Barron, A.R., Mater. Sci. Forum 137139, 473494 (1993).CrossRefGoogle Scholar
41.Cowley, A.H., Jones, R.A., Harris, P.A., Atwood, D.A., Contreras, L., and Burek, C.J., Angew. Chem. 103, 1164 (1991); Angew. Chem. Int. Eng. Ed. 30, 1143 (1991).CrossRefGoogle Scholar
42.Power, M.B. and Barron, A.R., Chem. Commun., 1315 (1991).CrossRefGoogle Scholar
43.McInnes, A. N., Power, M.B., and Barron, A.R., Chem. Mater. 4, 11 (1992).CrossRefGoogle Scholar
44.Power, M.B., Ziller, J.W., Tyler, A.N., and Barron, A.R., Organometallics 11, 1055 (1992).CrossRefGoogle Scholar
45.Rees, W.S. Jr, Anderson, T.J., Green, D.M., and Bretschneider, E., in Wide Band Gap Semiconductors, edited by Moustakas, T.D., Pankove, J.I, and Hamakawa, Y. (Mater. Res. Soc. Symp. Proc. 242, Pittsburgh, PA, 1992), pp. 281286.Google Scholar
46.Rees, W.S. Jr, Green, D.M., and Hesse, W., Polyhedron 11, 1667 (1992).CrossRefGoogle Scholar
47.Rees, W.S. Jr, Green, D.M., Anderson, T.J., Bretschneider, E., Pathangey, B., Park, C., and Kim, J., J. Electron. Mater. 21, 361366 (1992).CrossRefGoogle Scholar
48.Rees, W.S. Jr, Green, D.M., and Hesse, W., in Chemical Perspectives of Microelectronic Materials III, edited by Abernathy, C.R., Bates, C. W., Bohling, D.A., and Hobson, W.S. (Mater. Res. Soc. Symp. Proc. 282, Pittsburgh, PA, 1993), pp. 6367.Google Scholar
49.Rees, W.S. Jr, and Just, O., in Gas-Phase and Surface Chemistry in Electronic Materials Processing, edited by Mountziaris, T.J., Paz-Pujalt, G.R., Smith, F.T.J., and Westmoreland, P.R. (Mater. Res. Soc. Symp. Proc. 334, Pittsburgh, PA, 1994), pp. 219224.Google Scholar
50.Gaul, D., Just, O., and Rees, W.S. Jr, in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics II, edited by Desu, S.B., Beach, D.B., and Van Buskirk, P.C. (Mater. Res. Soc. Symp. Proc. 415, Pittsburgh, PA, 1996), pp. 117121.Google Scholar
51.Dance, I.G., Polyhedron 5, 1037 (1986).CrossRefGoogle Scholar
52.Kräuter, G. and Rees, W.S. Jr, J. Mater. Chem. 5, 12651267 (1995).CrossRefGoogle Scholar
53.Kräuter, G., Neumüller, B., Goedken, V., and Rees, W.S. Jr, Chem. Mater. 8, 360368 (1996).CrossRefGoogle Scholar
54.Mehrotra, R.C., Gupta, V.D., and Sukhani, D., Inorg. Chim. Acta. Rev. 2, 111 (1968).CrossRefGoogle Scholar
55.Bradley, D.C. and Marsh, C.H., Chem. Ind., 361 (1967).Google Scholar
56.Cotton, F.A. and Wilkinson, G., Advanced Inorganic Chemistry, 5th ed. (Wiley, New York, 1988), p. 609.Google Scholar
57.Elschenbroich, C. and Salzer, A., Organometallics: A Concise Introduction, Second, Revised Ed. (VCH, Weinheim, 1992), pp. 4856.Google Scholar
58. See, for example, a recent Epichem, Limited Catalogue.Google Scholar
59.Jones, A.C., in Wide Gap II–VI Semiconductors: Proceedings of the E-MRS Advanced Research Workshop, Montpellier, 16–18 January 1991, edited by Triboulet, R., Aulombard, R.L., and Mullin, J.B. (Adam Hilger, Bristol, 1991); Semiconductor Sci. Technol. 6, A36–A40 (1991).Google Scholar
60.Corwin, D.T. Jr, Gruff, E.S., and Koch, S.A., J. Chem. Soc. Chem. Commun., 966 (1987).CrossRefGoogle Scholar
61.Corwin, D.T. Jr, and Koch, S.A., Inorg. Chem. 27, 493 (1988).CrossRefGoogle Scholar
62.Berg, J.M., Prog. Inorg. Chem. 37, 143 (1988).CrossRefGoogle Scholar
63.Dev, S., Ramli, E., Rauchfuss, T.B., and Stern, C.L., J. Am. Chem. Soc., 112, 6385 (1990).CrossRefGoogle Scholar
64.Kräuter, G., Favreau, P., and Rees, W.S. Jr, Chem. Mater. 6, 543549 (1994).CrossRefGoogle Scholar
65.Rees, W.S. Jr, and Kräuter, G., Phosphorous, Sulfur, and Silicon, 93/94, 339344 (1995).CrossRefGoogle Scholar
66.Schluter, R.D., Luten, H.A., and Rees, W.S. Jr, in Covalent Ceramics III–Science and Technology of Non-Oxides, edited by Hepp, A.F., Kumta, P.N., Sullivan, J.J., Fischman, G.S., and Kaloyeros, A.E. (Mater. Res. Soc. Symp. Proc. 410, Pittsburgh, PA, 1996), pp. 97101.Google Scholar
67.Schluter, R.D., Kräuter, G., and Rees, W.S. Jr, in Covalent Ceramics III–Science and Technology of Non-Oxides, edited by Hepp, A. F., Kumta, P.N., Sullivan, J.J., Fischman, G.S., and Kaloyeros, A.E. (Mater. Res. Soc. Symp. Proc. 410, Pittsburgh, PA, 1996), pp. 8595.Google Scholar
68.West, A.R., Solid State Chemistry and its Applications, Reprinted with Corrections (John Wiley, Chichester, UK, 1987), p. 522.Google Scholar
69.Cotton, F.A. and Wilkinson, G., Advanced Inorganic Chemistry, 5th ed. (Wiley, New York, 1988), p. 605.Google Scholar
70.Physics and Chemistry of II–VI Compounds, edited by Aven, M. and Prener, J. (Wiley and Sons, New York, 1967), 844 pp.Google Scholar
71.Fluck's VCH Periodic Table of Elements (VCH Verlagsgesellschaft, Weinheim, Germany, 1985).Google Scholar
72.West, A.R., Solid State Chemistry and its Applications, Reprinted with Corrections (John Wiley, Chichester, UK, 1987), p. 44.Google Scholar
73.Ulrich, F. and Zachariasen, W., Z. Kristallogr. 62, 260 (1925).CrossRefGoogle Scholar
74.Kainthla, R.C., Pandya, D.K., Chopra, K.L., and Sharma, N.C., Thin Solid Films 60, 55 (1979).Google Scholar
75.Gmelin's Handbook der Anorganischen Chemie, 8th ed., edited by Hantke, G. (Verlag Chemie, Weinheim, 1969), Vol. 47C, pp. 414426.Google Scholar
76.Goldstein, A.N., Echer, C. M., and Alivisatos, A. P., Science 256, 1425 (1992).CrossRefGoogle Scholar
77.Steigerwald, M. L. and Brus, L. E., Acc. Chem. Res. 23, 183187 (1990).CrossRefGoogle Scholar
78.Nair, P.K. and Sebastian, P.J., Adv. Mater. for Optics and Elect. 1, 211 (1992).Google Scholar
79.Nair, P.K., Sanchez, A., and Sebastian, P.J., Adv. Mater. for Optics and Elect. 2, 133 (1993).Google Scholar
80.Rieke, P.C. and Bentjen, S.B., Chem. Mater. 5, 43 (1993).CrossRefGoogle Scholar