Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-17T14:19:01.583Z Has data issue: false hasContentIssue false

Synthesis of InN nanowires grown on droplets formed with Au and self-catalyst on Si(111) by using metalorganic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Cheul-Ro Lee*
Affiliation:
School of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Deokjin-Dong 664-14, Chonju, Chonbuk, Korea
*
a)Address all correspondence to this author. e-mail: crlee7@chonbuk.ac.kr
Get access

Abstract

We demonstrated the growth of indium nitride (InN) nanowires on Si(111) substrates by metalorganic chemical vapor deposition without the use of any intermediate GaN or AlN buffer layer. The InN nanowires were grown by forming the Au + In droplets and In droplets on the Au- and In-coated Si substrate. The growth conditions such as chamber pressure, chamber temperature, reaction gas flow rate, and carrier gas flow rate were optimized to yield nanowires free from contamination. Depending on the growth parameters different growth regimes for the InN nanowires were identified. The strength of self-catalytic route has been highlighted. The morphology and microstructures of samples were characterized by x-ray diffraction and scanning electron microscopy (SEM). The transmission electron microscopy and SEM investigations showed that the InN nanowires are single crystals with diameters ranging from 40 to 400 nm, and lengths up to 3 µm. Photoluminescence spectra of the InN nanowires showed a strong broad emission peak at 0.77 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wu, J., Walukiewicz, W., Yu, K., Ager, J., Haller, E., Lu, H., Schaff, W.Small band gap bowing in In1–xGaxN alloys. Appl. Phys. Lett. 80, 4741 (2002)CrossRefGoogle Scholar
2.Davydov, V.Yu., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A.V., Aderhold, J., Semchinov, O., Graul, J.Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap. Phys. Status Solidi RRL 229, 1 (2002)3.0.CO;2-O>CrossRefGoogle Scholar
3.Johnson, M.C., Lee, C.J., Bourret-Courchesn, E.D., Konsek, S.L., Aloni, S., Han, W.Q., Zettl, A.Growth and morphology of 0.80 eV photoemitting indium nitride nanowires. Appl. Phys. Lett. 85, 5670 (2004)CrossRefGoogle Scholar
4.Shubina, T.V., Ivanov, S.V., Jmerik, V.N., Solnyshkov, D.D., Vekshin, V.A., Kpp'ev, P.S., Vasson, A., Leymarie, J., Kavokin, A., Amano, H., Shimono, K., Kasic, A., Monemar, B.Mie resonances, infrared emission, and the band gap of InN. Phys. Rev. Lett. 92, 117407 (2004)CrossRefGoogle ScholarPubMed
5.Matsuoka, T., Okamoto, H., Nakao, M., Harima, H., Kurimoto, E.Optical band gap energy of wurtzite InN. Appl. Phys. Lett. 81, 1246 (2002)CrossRefGoogle Scholar
6.Stoica, T., Meijers, R., Calarco, R., Richter, R., Luth, H.MBE growth optimization of InN nanowires. J. Cryst. Growth 290, 241 (2006)CrossRefGoogle Scholar
7.Stoica, T., Meijers, R., Calarco, R., Richter, R., Sutter, E., Luth, H.Photoluminescence and intrinsic properties of MBE-grown InN nanowires. Nano Lett. 6, 1541 (2006)CrossRefGoogle ScholarPubMed
8.Shen, C., Chen, H., Lin, H., Gwo, S., Klochikhin, A., Davydov, V.Near-infrared photoluminescence from vertical InN nanorods arrays grown on silicon: Effects of surface electron accumulation layer. Appl. Phys. Lett. 88, 253104 (2006)CrossRefGoogle Scholar
9.Richter, T., Blomers, C., Luth, H., Calarco, R., Indlekofer, M., Marso, M., Schapers, T.Flux quantization effects in InN nanowires. Nano Lett. 8, 2834 (2008)CrossRefGoogle ScholarPubMed
10.Su, J., Cui, G., Gherasimova, M., Tsukamoto, H., Han, J., Ciuparu, D., Lim, S., Pfefferle, L., He, Y., Nurmikko, A.V., Broadbridge, C., Lehman, A.Catalytic growth of group III-nitride nanowires and nanostructures by metalorganic chemical vapor deposition. Appl. Phys. Lett. 86, 013105 (2005)CrossRefGoogle Scholar
11.Bloemers, C., Schapers, T., Richter, T., Calarco, R., Luth, H., Marso, M.Phase-coherent transport in InN nanowires of various sizes. Phys. Rev. B 77, 201301 (2008)CrossRefGoogle Scholar
12.Calleja, E., Grandal, J., Sanchez-Garcia, M., Niebelschutz, M., Cimalla, V., Ambacher, O.Evidence of electron accumulation at nonpolar surfaces of InN nanocolumns. Appl. Phys. Lett. 90, 262110 (2007)CrossRefGoogle Scholar
13.Chang, C., Chi, G., Wang, W., Chen, L., Chen, K., Ren, F., Pearton, S.Transport properties of InN nanowires. Appl. Phys. Lett. 87, 093112 (2005)CrossRefGoogle Scholar
14.Grandal, J., Sanchez-Garcia, M., Calleja, E., Luna, E., Trampert, A.Nanomechanical displacement detection using fiber-optic interferometry. Appl. Phys. Lett. 91, 093112 (2007)Google Scholar
15.Lee, S., Lee, W., Seo, K., Kim, J., Han, S., Kim, B.Electronic transport mechanism and photocurrent generations of single-crystalline InN nanowires. Nanotechnology 19, 415202 (2008)CrossRefGoogle ScholarPubMed
16.Vaddiraju, S., Mohite, A., Chin, A., Meyyappan, M., Sumanasekera, G., Alphenaar, B., Sunkara, M.Mechanisms of 1D crystal growth in reactive vapor transport: Indium nitride nanowires. Nano Lett. 5, 1625 (2005)CrossRefGoogle ScholarPubMed
17.Werner, F., Limbach, F., Carsten, M., Denker, C., Malindretos, J., Rizzi, A.Electrical conductivity of InN nanowires and the influence of the native indium oxide formed at their surface. Nano Lett. 9, 1567 (2009)CrossRefGoogle ScholarPubMed
18.Chen, C.C., Yeh, C.C.Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 12, 738 (2000)3.0.CO;2-J>CrossRefGoogle Scholar
19.Liang, C., Chen, L., Hwang, J., Chen, K., Hung, Y., Chen, Y.Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates. Appl. Phys. Lett. 81, 22 (2002)CrossRefGoogle Scholar
20.Cai, X., Leung, Y., Cheung, K., Tam, K., Djurisic, A., Xie, M., Chen, H., Gwo, S.Straight and helical InGaN core-shell nanowires with a high In core content. Nanotechnology 17, 2330 (2006)CrossRefGoogle Scholar
21.Chao, C., Chyi, J., Hsiao, C., Kei, C., Kuo, S., Chang, H., Hsu, T.Catalyst-free growth of indium nitride nanorods by chemical-beam epitaxy. Appl. Phys. Lett. 88, 233111 (2006)CrossRefGoogle Scholar
22.Bi, Z.Low-temperature MOCVD growth of InN buffer layers with indium pre-deposition technology. J. Cryst. Growth 300, 123 (2007)CrossRefGoogle Scholar
23.Nishikawa, S., Nakao, Y., Naoi, H., Araki, T., Na, H., Nanishi, Y.Growth of InN nanocolumns by RF-MBE. J. Cryst. Growth 301, 490 (2007)CrossRefGoogle Scholar
24.Chang, Y.L., Li, F., Fatechi, A., Mi, Z.Molecular beam epitaxial growth and characterization of non-tapered InN nanowires on Si(111). Nanotechnology 20, 345203 (2009)CrossRefGoogle Scholar
25.Li, Z.Y., Lan, S.M., Uen, W.Y., Chen, Y.R., Chen, M.C., Huang, Y.H., Ku, C.T., Liao, S.M., Yang, T.N., Wang, S.C., Chi, G.C.Growth of InN on Si(111) by atmospheric-pressure metal-organic chemical vapor deposition using InN/AlN double-buffer layers. J. Vac. Sci. Technol., A 26, 587 (2008)CrossRefGoogle Scholar
26.Parala, H., Devi, A., Hipler, F., Maile, E., Birkner, A., Becker, H.W., Fischer, R.A.Investigations on InN whiskers grown by chemical vapor deposition. J. Cryst. Growth 231, 68 (2001)CrossRefGoogle Scholar
27.Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., Schaff, W.J., Saito, Y., Nanishi, Y.Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967 (2002)CrossRefGoogle Scholar
28.Inushima, T., Mamutin, V.V., Vekshinb, V.A., Ivanov, S.V., Sakon, T., Motokawa, M., Ohoya, S.Physical properties of InN with the band gap energy of 1.1 eV. J. Cryst. Growth 227–228, 481 (2001)CrossRefGoogle Scholar
29.Johnson, M.C., Konsek, S.L., Zettl, A., Bourret-Courchesne, E.D.Nucleation and growth of InN thin films using pulsed MOVPE. J. Cryst. Growth 272, 400 (2004)CrossRefGoogle Scholar
30.Chen, J.W., Chen, Y.F., Lu, H., Schaff, W.J.Cross-sectional Raman spectra of InN epifilms. Appl. Phys. Lett. 87, 041907 (2005)CrossRefGoogle Scholar
31.Davydov, V., Klochikhin, A., Ivanov, S., Aderhold, J., Yamamoto, A.Nitride Semiconductors: Handbook on Materials and Devices (Willey-VCH, Weinheim, Germany 2003)280294Google Scholar