Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T12:18:07.969Z Has data issue: false hasContentIssue false

Three-Dimensional Imaging in Aberration-Corrected Electron Microscopes

Published online by Cambridge University Press:  22 June 2010

Huolin L. Xin*
Affiliation:
Department of Physics, Cornell University, Ithaca, NY 14853, USA
David A. Muller
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
*
Corresponding author. E-mail: hx35@cornell.edu
Get access

Abstract

This article focuses on the development of a transparent and uniform understanding of possibilities for three-dimensional (3D) imaging in scanning transmission and confocal electron microscopes (STEMs and SCEMs), with an emphasis on the annular dark-field STEM (ADF-STEM), bright-field SCEM (BF-SCEM), and ADF-SCEM configurations. The incoherent imaging approximation and a 3D linear imaging model for ADF-STEM are reviewed. A 3D phase contrast model for coherent-SCEM as well as a pictorial way to find boundaries of information transfer in reciprocal space are reviewed and applied to both BF- and ADF-SCEM to study their 3D point spread functions and contrast transfer functions (CTFs). ADF-STEM is capable of detecting the depths of dopant atoms in amorphous materials but can fail for crystalline materials when channeling substantially modifies the electron propagation. For the imaging of extended (i.e., nonpointlike) features, ADF-STEM and BF-SCEM exhibit strong elongation artifacts due to the missing cone of information. ADF-SCEM shows an improvement over ADF-STEM/BF-SCEM due to its differential phase contrast eliminating slowly varying backgrounds, an effect that partially suppresses the elongation artifacts. However, the 3D CTF still has a cone of missing information that will result in some residual feature elongation as has been observed in A. Hashimoto et al., J Appl Phys160(8), 086101 (2009).

Type
Special Section—Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L.J., Findlay, S.D., Oxley, M.P. & Rossouw, C.J. (2003). Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96(1), 4763.CrossRefGoogle ScholarPubMed
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418(6898), 617620.CrossRefGoogle ScholarPubMed
Behan, G., Cosgriff, E.C., Kirkland, A.I. & Nellist, P.D. (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos T R Soc A 367(1903), 38253844.CrossRefGoogle ScholarPubMed
Black, G. & Linfoot, E.H. (1957). Spherical aberration and the information content of optical images. P R Soc Lond A Mat 239(1219), 522540.Google Scholar
Born, M. & Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. New York: Cambridge University Press.CrossRefGoogle Scholar
Cosgriff, E.C., D'Alfonso, A.J., Allen, L.J., Findlay, S.D., Kirkland, A.I. & Nellist, P.D. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, Part I: Elastic scattering. Ultramicroscopy 108(12), 15581566.CrossRefGoogle ScholarPubMed
Cosgriff, E.C. & Nellist, P.D. (2007). A Bloch wave analysis of optical sectioning in aberration-corrected STEM. Ultramicroscopy 107(8), 626634.Google ScholarPubMed
D'Alfonso, A.J., Cosgriff, E.C., Findlay, S.D., Behan, G., Kirkland, A.I., Nellist, P.D. & Allen, L.J. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, Part II: Inelastic scattering. Ultramicroscopy 108(12), 15671578.CrossRefGoogle ScholarPubMed
Dwyer, C., Findlay, S.D. & Allen, L.J. (2008). Multiple elastic scattering of core-loss electrons in atomic resolution imaging. Phys Rev B 77(18), 184107.CrossRefGoogle Scholar
Einspahr, J.J. & Voyles, P.M. (2006). Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106(11–12), 10411052.CrossRefGoogle ScholarPubMed
Ercius, P., Weyland, M., Muller, D.A. & Gignac, L.M. (2006). Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl Phys Lett 88, 243116.CrossRefGoogle Scholar
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101.CrossRefGoogle ScholarPubMed
Findlay, S.D., Allen, L.J., Oxley, M.P. & Rossouw, C.J. (2003). Lattice-resolution contrast from a focused coherent electron probe. Part II. Ultramicroscopy 96(1), 6581.CrossRefGoogle ScholarPubMed
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81(11), 21122114.CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998a). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75(1), 5360.CrossRefGoogle Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998b). Electron microscopy image enhanced. Nature 392(6678), 768769.Google Scholar
Hashimoto, A., Shimojo, M., Mitsuishi, K. & Takeguchi, M. (2009). Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J Appl Phys 106(8), 086101-1086101-3.CrossRefGoogle Scholar
Hillyard, S. & Silcox, J. (1993). Thickness effects in ADF STEM zone-axis images. Ultramicroscopy 52(3–4), 325334.Google Scholar
Howie, A. (1979). Image-contrast and localized signal selection techniques. J Microsc-Oxf 117(Sep), 1123.CrossRefGoogle Scholar
Howie, A. (2009). Aberration correction: Zooming out to overview. Philos T R Soc A Mat 367(1903), 38593870.CrossRefGoogle ScholarPubMed
Intaraprasonk, V., Xin, H.L. & Muller, D.A. (2008). Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108(11), 14541466.CrossRefGoogle ScholarPubMed
Kirkland, E.J. (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.CrossRefGoogle Scholar
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108(3), 179195.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Dellby, N. & Lupini, A.R. (1999). Towards sub-Å electron beams. Ultramicroscopy 78(1–4), 111.CrossRefGoogle Scholar
Krivanek, O.L., Nellist, P.D., Dellby, N., Murfitt, M.F. & Szilagyi, Z. (2003). Towards sub-0.5 Å electron beams. Ultramicroscopy 96(3–4), 229237.CrossRefGoogle ScholarPubMed
Loane, R.F., Kirkland, E.J. & Silcox, J. (1988). Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark field. Acta Crystallogr A 44, 912927.CrossRefGoogle Scholar
Lupini, A.R., Borisevich, A.Y., Idrobo, J.C., Christen, H.M., Biegalski, M. & Pennycook, S.J. (2009). Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Microsc Microanal 15(5), 441453.CrossRefGoogle ScholarPubMed
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8(4), 271280.CrossRefGoogle ScholarPubMed
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96(3–4), 413431.CrossRefGoogle ScholarPubMed
Muller, D.A., Nakagawa, N., Ohtomo, A., Grazul, J.L. & Hwang, H.Y. (2004). Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430(7000), 657661.CrossRefGoogle ScholarPubMed
Muller, D.A. & Silcox, J. (1995). Delocalization in inelastic scattering. Ultramicroscopy 59(1–4), 195213.CrossRefGoogle Scholar
Nellist, P.D., Behan, G., Kirkland, A.I. & Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89, 124105.CrossRefGoogle Scholar
Nellist, P.D., Cosgriff, E.C., Behan, G. & Kirkland, A.I. (2008a). Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope. Microsc Microanal 14(1), 8288.CrossRefGoogle Scholar
Nellist, P.D., Cosgriff, E.C., Behan, G., Kirkland, A.I., D'Alfonso, A.J., Findlay, S.D. & Allen, L.J. (2008b). Three-dimensional imaging and analysis by optical sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscopes. Microsc Microanal 14(S2), 104105.CrossRefGoogle Scholar
Sheppard, C.J.R. (1986). The spatial-frequency cutoffs in 3-dimensional imaging. Optik 72(4), 131133.Google Scholar
Sheppard, C.J.R. & Choudhury, A. (1977). Image-formation in scanning microscope. Optica Acta 24(10), 10511073.CrossRefGoogle Scholar
Streibl, N. (1985). Three-dimensional imaging by a microscope. J Opt Soc Am A 2(2), 121127.CrossRefGoogle Scholar
Takeguchi, M., Hashimoto, A., Shimojo, M., Mitsuishi, K. & Furuya, K. (2008). Development of a stage-scanning system for high-resolution confocal STEM. J Electron Microsc (Tokyo) 57(4), 123127.CrossRefGoogle ScholarPubMed
Urban, K.W. (2008). Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321(5888), 506510.CrossRefGoogle ScholarPubMed
van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S., Lee, J.H., Oxley, M.P., Findlay, S.D., Allen, L.J., Luck, J.T. & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87(3), 034104.CrossRefGoogle Scholar
Voyles, P.M., Grazul, J.L. & Muller, D.A. (2003). Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96(3–4), 251273.CrossRefGoogle ScholarPubMed
Xin, H.L., Intaraprasonk, V. & Muller, D.A. (2008a). Controlling channeling effects in aberration-corrected STEM tomography. Microsc Microanal 14(S2), 926927.CrossRefGoogle Scholar
Xin, H.L., Intaraprasonk, V. & Muller, D.A. (2008b). Controlling channeling effects in aberration-corrected STEM tomography. Microsc Microanal 14(S2), 926927.CrossRefGoogle Scholar
Xin, H.L., Intaraprasonk, V. & Muller, D.A. (2008c). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92(1), 013125–013123.CrossRefGoogle Scholar
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58(3), 157165.CrossRefGoogle ScholarPubMed
Yu, Z.H., Muller, D.A. & Silcox, J. (2004). Study of strain fields at a-Si/c-Si interface. J Appl Phys 95(7), 33623371.CrossRefGoogle Scholar
Zaluzec, N.J., Weyland, M. & Etheridge, J. (2009). Scanning confocal electron microscopy in a FEI double corrected Titan3 TEM/STEM. Microsc Microanal 15(S2), 614615.CrossRefGoogle Scholar